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People’s judgments and decisions often deviate from classical notions of rationality, incurring
costs both to themselves and to society. One way to reduce the costs of poor decisions is to
redesign the decision problems people face to encourage better choices. While often subtle,
these nudges can have dramatic effects on behavior and are increasingly popular in public
policy, healthcare, and marketing. Although nudges are often designed with psychological the-
ories in mind, they are typically not formalized in computational terms and their effects can be
hard to predict. As a result, designing nudges can be difficult and time-consuming. To address
this challenge, we propose a computational framework for understanding and predicting the
effects of nudges. Our framework builds on recent work modeling human decision-making
as adaptive use of limited cognitive resources, an approach called resource-rational analysis.
Concretely, nudges change the optimal sequence of cognitive operations an agent should ex-
ecute, which in turn influences the agent’s behavior. We first show that our framework can
account for known effects of nudges based on default options, suggested alternatives, and in-
formation highlighting. In each case, we validate the model’s predictions in an experimental
process-tracing paradigm. We then show how the framework can be used to automatically
construct optimal nudges, and demonstrate that these nudges improve people’s decisions more
than intuitive heuristic approaches. Overall, our results show that resource-rational analysis is
a promising framework for formally characterizing and constructing nudges.
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How do people choose when to recycle, how much to save,
or what to buy for lunch? When facing decisions both large
and small, people’s choices are often at odds with classical
notions of rationality. These deviations are not only theoret-
ically important, but can also incur large costs for both indi-
viduals and societies (Kahneman, Slovic, & Tversky, 1982).
For example, a majority of Americans report undersaving for
retirement (Choi et al., 2006), which may be partly due to
people’s inconsistent time preferences, tendency to neglect
compounding, and bias towards procrastination (Goda, Levy,
Manchester, Sojourner, & Tasoff, 2015; Thaler & Benartzi,
2004).

In an effort to reduce these costs, researchers have pro-
posed using theoretical and empirical results from psychol-
ogy to redesign the choice architecture, or way that decisions
are structured and framed, to help people make better choices
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(Thaler & Sunstein, 2008). For example, retirement savings
can be increased by having employees opt out of automatic
contributions, rather than opting in (Madrian & Shea, 2001).
These nudges are an increasingly popular complement to tra-
ditional interventions such as educational programs, legisla-
tion, and tax incentives, and are often significantly less ex-
pensive to administer (Benartzi et al., 2017).

While promising, there is no widely accepted formal
framework for modeling the effects of different choice ar-
chitectures on behavior. This introduces three substantial
challenges for nudge theory. First, models of nudges are
often domain-specific and ad hoc (Chetty, 2015; Hausman &
Welch, 2010; Kosters & Van der Heijden, 2015; Willis, 2013;
Yeung, 2012). This makes it difficult to make robust pre-
dictions in new settings (Kosters & Van der Heijden, 2015;
Moseley & Stoker, 2013; Yeung, 2012). Second, there is
often disagreement about what behaviors nudges should aim
to promote (Goodwin, 2012; Tannenbaum, Fox, & Rogers,
2017). When choice architects and decision makers have dif-
ferent goals, nudges could be seen as manipulative or even
exploitative (Hausman & Welch, 2010; Wilkinson, 2013).
Identifying appropriate goals for nudges is especially chal-
lenging in populations with heterogeneous preferences and
needs (Carroll, Choi, Laibson, Madrian, & Metrick, 2009;
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Mills, 2020). Third, developing new nudges often involves
an iterative process of search and experimentation (Moseley
& Stoker, 2013; Vlaev, King, Dolan, & Darzi, 2016). This
process is slow and expensive, and it constrains nudges to
choice architectures that researchers find intuitive.

In this paper, we propose using resource-rational analysis
as a formal framework for modeling nudges and predicting
their effects. Resource-rational analysis is an approach to
deriving models of human behavior by assuming that people
make optimal use of their limited computational resources
(Griffiths, Lieder, & Goodman, 2015; Lieder & Griffiths,
2020; c.f. Gershman, Horvitz, & Tenenbaum, 2015; Howes,
Lewis, & Vera, 2009; Lewis, Howes, & Singh, 2014; Sims,
2003). That is, while classical rational models assume that
people are rational with respect to their choices, resource-
rational models assume that people are rational with respect
to how much they think and what they think about. Impor-
tantly, which factors are worth considering depends critically
on the ease with which they can be considered. This suggests
a principled way of understanding nudging: by modifying
the accessibility of different pieces of information, nudges
change what information a decision maker considers, which
in turn influences their choices.

The framework of resource-rational analysis can help ad-
dress the three challenges facing choice architects described
above. First and foremost, it provides a way to build mathe-
matically explicit models of how a person’s decision-making
process—and ultimately, their decision—depends on aspects
of the choice architecture. This not only makes it possi-
ble to provide rigorous formal explanations for the effects
of nudges, but also to predict how those effects will change
under new decision contexts or variations of the nudge. Sec-
ond, by formalizing decision-making as a cost-benefit opti-
mization problem, resource-rational analysis provides a new
way to conceptualize and quantify the goals of nudges. In
particular, we can evaluate a nudge not just based on the
effect it has on a person’s decision, but also based on the
effect it has on their deliberation. Finally, building on the
first two contributions, we present an automated method for
constructing optimal nudges, in which we use optimization
algorithms to identify the choice architecture that best satis-
fies a given goal.

The paper is organized as follows. We first provide a brief
review of nudging and resource rational analysis. We then
present our formal framework for modeling nudging and in-
troduce an experimental paradigm for testing our predictions.
We apply our approach to three popular nudges—default op-
tions, suggestions, and information highlighting. For each
nudge, we first use resource-rational analysis to model its
effects, and then test predictions from our model in a behav-
ioral experiment. After providing a formal account of these
nudges, we show how our framework can be used to auto-
matically construct optimal information highlighting nudges.

We test our approach to optimal information highlighting in
two experiments, comparing nudges determined by our pro-
cedure with those constructed by a heuristic and those con-
structed randomly. We conclude by discussing the implica-
tions of our findings and approach to nudge theory, ways in
which our framework could be improved, and promising ar-
eas for future research.

Nudging

Nudging is an approach to improving people’s choices by
changing the way decisions are framed and presented (Sun-
stein, 2019; Thaler & Sunstein, 2008). Nudges use find-
ings from psychology and behavioral economics to change
the structure of a decision without restricting people’s free-
dom of choice or changing their economic incentives. While
often simple, nudges have been effective in a diverse set of
domains, including education (Damgaard & Nielsen, 2018),
finance (Cai, 2020), healthcare (Voyer, 2015), energy con-
sumption (Lehner, Mont, & Heiskanen, 2016), and tax com-
pliance (Antinyan & Asatryan, 2019), among others (Sun-
stein, 2016; Szaszi, Palinkas, Palfi, Szollosi, & Aczel, 2018).

Most research on nudging has been guided by research
on heuristics and biases (Kahneman et al., 1982). In this
paradigm, researchers design choice architectures that ei-
ther attempt to mitigate the effect of a bias or instead lever-
age the bias to guide behavior. Consider, for example, the
widely studied tendency for people to procrastinate perform-
ing important tasks (Steel, 2007). The effects of this bias can
be reduced by giving people tighter deadlines (O’Donoghue
& Rabin, 1998); for example, individuals redeem more gift
certificates when they expire more quickly (Shu & Gneezy,
2010). On the other hand, people’s bias towards procrasti-
nation can be used as a tool for improving choice. For ex-
ample, Thaler and Benartzi (2004) show that allowing em-
ployees to commit to saving a proportion of future salary
increases can improve savings rates. As we review further
below, researchers have catalogued many examples of effec-
tive nudges, and provided plausible cognitive mechanisms
underlying their effects. However, these explanations have
typically not been formalized mathematically, and they are
often highly specific to each individual case.

A more recent line of work has thus focused on developing
formal models that capture of a wide range of nudges (Felsen
& Reiner, 2015; Lin, Osman, & Ashcroft, 2017). These mod-
els typically abstract away from the specific psychological
mechanisms involved, and instead characterize nudges using
the formal tools of economics. To account for the effect of
nudges, which by definition do not substantially change eco-
nomic incentives, these models employ a distinction between
a decision maker’s decision utility (the objective they max-
imize when making a decision), and their experienced util-
ity (the well-being they derive from their choice; Kahneman,
Wakker, & Sarin, 1997). Specifically, nudges are modeled
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as changes to the decision utility or the perceived cost of
a good. These models of nudges have allowed economists
to incorporate nudging into analyses of welfare and taxation
(Allcott & Kessler, 2019; Carlsson & Johansson-Stenman,
2019; Chetty, 2015; Farhi & Gabaix, 2020). In a recent ex-
tension of this approach, Löfgren and Nordblom (2020) con-
sider how properties of a decision determine when people
make heuristic (and therefore, nudgeable) choices. However,
because these models abstract away from specific choice ar-
chitectures (summarizing them as simple scalar utility off-
sets), they are unable to make specific predictions about how
different nudges will affect people’s decisions.

Thus, one line of work has produced intuitive, mechanistic
accounts of individual nudges, while another has produced
formal, abstract accounts of nudging as a whole. However,
to the best of our knowledge, no previous work has proposed
a formal framework that can make predictions about the ef-
fects of specific choice architectures. In this paper, we pro-
pose that resource-rational analysis provides such a frame-
work. We demonstrate the approach using three commonly-
used nudges as case studies: default options, suggestions,
and information highlighting. We now describe each type of
nudge in detail and briefly review findings on their impact on
choice.

Default options

Perhaps the best known and most successful type of nudge
involves reconfiguring or introducing default options. De-
fault options are those that the decision maker (hereafter, the
agent) will select if they do not act. That is, default options
are chosen when no decision is made, and thus define the sta-
tus quo. For example, in the United States people must sign
up to be organ donors. In other countries, however, the de-
fault is switched: people are considered organ donors unless
they request not to be.

While subtle, defaults can have substantial effects on peo-
ple’s choices in both field (Bergeron, Doyon, Saulais, &
Labrecque, 2019; Momsen & Stoerk, 2014) and laboratory
(Huh, Vosgerau, & Morewedge, 2014) settings. For exam-
ple, organ donation rates in countries with opt-out programs
have significantly higher donation rates than countries with
opt-in programs (Abadie & Gay, 2006; Johnson & Goldstein,
2004). Similarly, defaults have been shown to have large ef-
fects on a wide range of decisions, such as investment and
saving (Madrian & Shea, 2001), insurance selection (John-
son, Hershey, Meszaros, & Kunreuther, 1993), and charitable
donations (Goswami & Urminsky, 2016).

Despite their widespread use and overall success, defaults
are not always effective (Sunstein, 2017). A recent meta-
analysis found several studies in which default options had
no significant effect on choice, and there was considerable
variation in the effect size among those with significant ef-
fects (Jachimowicz, Duncan, Weber, & Johnson, 2019). Ex-

plaining why defaults work when they do—and better yet,
predicting new contexts in which they will be effective—is
thus an important goal in nudging research.

Several explanations for the influence of defaults have
been offered. First, making a choice is costly—an agent
may decide that evaluating possible alternatives is simply
not worth their effort when a default is offered (Johnson &
Goldstein, 2003; Johnson et al., 2012). This is supported by
research showing that placing people under cognitive load
(Huh et al., 2014) or time pressure (White, Jiang, & Albar-
racin, 2021) increases the chance that they stick with the de-
fault. Second, the agent may interpret the default as an im-
plicit recommendation or endorsement from the choice ar-
chitect or policy maker (Gigerenzer, 2008; Johnson & Gold-
stein, 2003; McKenzie, Liersch, & Finkelstein, 2006). This
may cause defaults to be less effective in domains where peo-
ple have expertise (Brown, Farrell, & Weisbenner, 2012; Löf-
gren, Martinsson, Hennlock, & Sterner, 2012) or perceive the
choice architect as having interests differing from their own
(Tannenbaum et al., 2017). Third, if the default option is
used as a reference point, loss aversion may bias the agent
towards the status quo, or to sticking with the default (Din-
ner, Johnson, Goldstein, & Liu, 2011; Fryer Jr, Levitt, List,
& Sadoff, 2012). Indeed, each of these effects may influence
different people on the same decision problem (Brown et al.,
2012).

Suggested alternatives

In many domains, people are offered a suggestion before
or after making a choice. For example, digital recommender
systems allow consumers to identify options they may not
have considered on their own (Schafer, Konstan, & Riedl,
1999), and salespeople often “upsell”, suggesting lucrative
alternatives or additions after a customer’s initial choice. Re-
search has shown that when used for the consumer’s benefit,
suggestions can be effective instruments for improving peo-
ple’s choices (van Kleef, van den Broek, & van Trijp, 2015).
For example, in a twist on the well-known “supersizing” up-
sell, Schwartz, Riis, Elbel, and Ariely (2012) showed that
up to 33% of customers at a fast food restaurant accepted an
offer to downsize a side order, significantly reducing their
calorie consumption. Similarly, suggesting nutritious side
dishes can increase healthy purchases (Vercellis, 2009), and
offering restaurant customers the opportunity to “wrap” their
leftovers after a meal may reduce food waste (Hamerman,
Rudell, & Martins, 2018). The effectiveness of suggested
alternatives is not limited to food choice—Forget, Chiasson,
Van Oorschot, and Biddle (2008) show that providing more
secure alternatives to user-generated passwords can signifi-
cantly improve password security.

Suggestions can also be given before an initial choice, an
especially common approach in digital recommendation sys-
tems (Jesse & Jannach, 2021; Xiao & Benbasat, 2007). In-
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deed, suggestions given early in the deliberation process may 
be especially effective in impacting choice (Forwood, Ahern, 
Marteau, & Jebb, 2015). For example, Bothos, Apostolou, 
and Mentzas (2015) show that a recommender system can 
help commuters identify alternative eco-friendly routes they 
would not have considered on their own.

While often successful, it remains unclear why and how 
upsells and other suggestions influence people’s choices. 
Suggestions may break the automatic behavior, or “script,” 
of certain situations, allowing people to exert more self-
control and make better choices than they otherwise would 
(Schwartz et al., 2012). In other domains, external sugges-
tions may allow people to justify norm-violating choices or 
behaviors (Hamerman et al., 2018). Lastly, because sugges-
tions are often accompanied by novel information highlight-
ing their attractiveness (Heidig, Wentzel, Tomczak, Wiecek, 
& Faltl, 2017), people may tend to systematically overesti-
mate their quality.

Information highlighting

Default options and suggestions influence people’s 
choices by making certain choices easier than others or pro-
viding additional information about certain options. Infor-
mation highlighting nudges, by contrast, influence people’s 
behavior by modifying the presentation of choice-relevant 
information. By making certain information more or less 
salient, information highlighting nudges take advantage of 
the limited attention, effort, and time people have to make 
their decision, and often influence people’s choices without 
their knowledge.

While common in many domains, information highlight-
ing is especially popular in designing “foodscapes”—the 
physical and digital environments where people purchase 
or consume food—to help people make healthier choices 
(Bucher et al., 2016; Elsweiler, Trattner, & Harvey, 2017; 
Starke, Kløverød Brynestad, Hauge, & Løkeland, 2021; Wil-
son, Buckley, Buckley, & Bogomolova, 2016). One popular 
approach to promoting healthier eating choices is to manip-
ulate the labeling of nutritional information on food packag-
ing. However, consumers often attend to just one or two 
product features when deciding what to buy (Kalnikaitė, 
Bird, & Rogers, 2013), and so the effects of la-beling depend 
critically on how information is displayed, not just what 
information is available (Liu, Wisdom, Roberto, Liu, & 
Ubel, 2014). Indeed, simply providing additional in-
formation about each option (such as the number of calories 
it contains) often has little, if any, effect on choice (Kiszko, 
Martinez, Abrams, & Elbel, 2014; Loewenstein, Asch, Fried-
man, Melichar, & Volpp, 2012; Sinclair, Cooper, & Mans-
field, 2014) as many consumers simply ignore the informa-
tion (Krukowski, Harvey-Berino, Kolodinsky, Narsana, & 
DeSisto, 2006). Instead, effective information highlighting 
typically involves summarizing a limited number of features

with simple visual cues (Lin et al., 2017). These effects,
of course, have long been exploited in marketing contexts,
where product design, packaging, and labeling is manipu-
lated to increase sales (Deliza & MacFie, 2001).

For example, Ecuador recently introduced mandatory
“traffic light” labeling of food items’ fat, sugar, and salt con-
tent. In these labels, the concentration of each nutrient is
listed at one of four levels, with each level represented by a
unique color—none (white), low (green), medium (orange),
and high (red). Research has found that these labels have im-
proved healthy eating behavior in Ecuador (Sandoval, Car-
pio, & Sanchez-Plata, 2019), mirroring findings on the ef-
fects of similar labels in restaurants and cafeterias in other
countries (Ellison, Lusk, & Davis, 2014; Sonnenberg et al.,
2013; Thorndike, Riis, Sonnenberg, & Levy, 2014). How-
ever, the impact of traffic light labeling appears to be highly
dependent on individual characteristics such as age (Freire,
Waters, & Rivas-Mariño, 2017), health attitudes (Freire, Wa-
ters, Rivas-Mariño, Nguyen, & Rivas, 2017), and socioeco-
nomic status (Orozco, Ochoa, Muquinche, Padro, & Melby,
2017; Sandoval et al., 2019).

Summary

Nudges are changes to the structure or framing of a deci-
sion that do not restrict people’s freedom of choice or change
their economic incentives. While nudging is a promising tool
for improving choice and reducing bias, there is no unifying
theoretical framework for modeling the effects of different
choice architectures on deliberation and behavior (Buckley,
2009; Yeung, 2012). In this paper, we argue that resource-
rational analysis is a promising framework for doing so.

A resource-rational approach to nudging

Resource-rational analysis is a formal framework for de-
riving cognitive models based on the assumption that peo-
ple act optimally with respect to their limited cognitive re-
sources. Within this approach, a cognitive process is un-
derstood as the solution to an optimization problem, where
the objective function explicitly trades off external utility
with internal computational cost. Given that exactly solv-
ing complex problems generally incurs high computational
cost, resource-rational models rarely predict that people will
even attempt to identify exact solutions. Instead, they find
solutions that balance choice quality with effort. As a result,
resource-rational models often make behavioral predictions
that differ dramatically from classical theories of rationality,
and have been shown to account for a wide range of appar-
ent biases and errors in human decision-making (see Bhui,
Lai, and Gershman (2021); Lieder and Griffiths (2020) for
reviews).

A key intuition behind resource-rational analysis is that
the effectiveness of a decision-making strategy depends not
only on the agent’s external environment, but also on their
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Figure 1

A resource rational approach to nudging

nudge

Note. (A) We model decision-making as a process in which an agent executes a sequence of cognitive operations (thoughts) that update
their beliefs about the value of the available choices. The space of possible thoughts and beliefs defines the meta-level problem of decision-
making: which factors should the agent consider, and which should they ignore? These meta-level decisions determine the belief upon
which the agent ultimately makes a choice, and therefore the choice itself. (B) We model nudges as modifications to the meta-level problem.
For example, a nudge might make some thoughts easier to have than others, leading the agent to arrive at a different belief about the value
of each option. Critically, this can change their ultimate choice without changing anything about the options themselves (that is, without
modifying the object-level problem).

internal environment, that is, the workings of the agent’s
own mind (c.f. Simon, 1955). How can we formally
characterize that internal environment? Recent work has
done so using the same tools typically used to model ex-
ternal environments. In this approach, cognitive processes
(such as decision-making) are modeled as sequential de-
cision problems (Callaway, Lieder, et al., 2018; Callaway,
Rangel, & Griffiths, 2021; Chen, Chang, & Howes, 2021;
Lieder, Krueger, & Griffiths, 2017). But while a traditional
sequential decision problem is defined by states of the world
and physical actions, the internal—or meta-level—decision
problem is defined by mental states and cognitive opera-
tions. Intuitively, making a decision often involves consid-
ering multiple factors, and at each moment we have some
control over which factor we will consider next. These meta-
level decisions about what to think about determine our fu-
ture beliefs, which in turn determine the external—or object-
level—choices we ultimately make.

As illustrated in Figure 1, formalizing decision-making

as a sequential decision problem provides a new way to un-
derstand the effects of nudges. Rather than changing incen-
tives or limiting choice (changes to the object-level problem),
nudges make it easier to consider some factors than others or
change the information the decision-maker starts with. That
is, they change the meta-level problem. By changing which
thoughts a decision-maker is likely to have, nudges indirectly
change the beliefs upon which a choice is made, potentially
changing the choice itself.

Modeling nudges in this way has three consequences.1

First, resource-rational models allow us to make quantitative
predictions about the effects of different nudges. Second, for-
malizing the computational cost of decision-making allows
us to formalize different possible goals for nudges, such as
making decisions easier. Finally, building on the first two
contributions, we can use resource-rational models to con-

1For a related discussion about the value of behavioral eco-
nomics for public policy, see Chetty (2015).
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struct optimal nudges, that is, nudges that best accomplish
their goals. We now briefly expand on each contribution.

Predicting the effects of nudges

A key insight from previous research on nudging is that
we can use psychological theory to guide the construction of
choice architectures. However, rather than originating from a
unified formal framework, this guidance is typically domain-
specific and ad hoc (Chetty, 2015; Yeung, 2012; for similar
arguments about behavioral law and economics, see Rostain,
2000). In contrast, if we can specify a mathematically ex-
plicit model of how a person’s decision-making process de-
pends on different aspects of the choice architecture, we can
make quantitative predictions about the effects of different
nudges across a range of domains. Importantly, the optimal-
ity assumption underlying resource-rational analysis allows
us to make these predictions a priori. Indeed, all of the mod-
els we report in this paper have no free parameters. This con-
trasts with the standard cognitive modeling approach, where
experimental data is often necessary to fit the parameters that
govern the relationship between stimulus and response (in
this case, choice architecture and choice).

Specifying the goals of nudges

Most previous applications of nudging have set the goal
of encouraging people to make a specific choice, typically
the one the choice architect assumes to be the best. However,
this goal is often not made explicit to consumers, and does
not take into account the possibility that the consumer may
have different values than the choice architect. As a result,
nudges have been criticized for their paternalism and lack
of transparency (Goodwin, 2012; Wilkinson, 2013). Indeed,
surveys indicate that people sometimes find nudges to be ma-
nipulative or unethical (Jung & Mellers, 2016).

An alternative approach is to design nudges with the ex-
plicit goal of increasing the consumer’s utility, i.e., helping
them make the best choice for themselves. However, by fo-
cusing solely on the choices people make, we ignore another
positive effect nudges can have: They can make decisions
easier. For example, consider the choice of which of two
hotels to book as a conference venue, where one hotel has
the unfortunate property of being unavailable on the chosen
dates. Highlighting this information early on will not change
the booker’s final decision, but it could prevent unnecessary
effort evaluating the relative merits of each hotel’s coffee ser-
vice. Resource-rational analysis formalizes the cost of that
effort in a way that allows a choice architect to directly bal-
ance between the ease of decision-making and the possibility
of making a suboptimal choice.

Constructing optimal nudges

Designing nudges is a challenging task. Because there is
little formal theory about why some nudges are effective and
others and not (Yeung, 2012), developing nudges often in-
volves an iterative, experimental approach that can be time-
consuming and expensive. This problem looms especially
large when the space of possibilities is large: For example,
when designing information highlighting nudges, choice ar-
chitects not only have to choose the goal of the nudge, but
also which type of modifications to make. These decisions
can involve complex interactions and tradeoffs—should good
options be made more appealing, or bad options less so?
Should decisions be designed to encourage any good choice,
or only the best one? And how can choice architects ensure
that the nudge is beneficial to people with idiosyncratic pref-
erences?

To address these challenges, we propose an automated
method for constructing optimal nudges based on our
resource-rational framework. This contribution builds on the
previous two. First, because resource-rational models can
make strong quantitative predictions a priori (that is, without
fitting parameters to data), we can predict effect of a candi-
date nudge without running an experiment. Second, because
resource-rational analysis formalizes the cost-benefit tradeoff

underlying resource-constrained decision-making, we can
define mathematically precise goals that balance the ease
and quality of the consumer’s decisions. Together, these two
pieces allow us to define an objective function that takes as
input a candidate nudge and returns a scalar capturing the de-
gree to which the nudge satisfies the choice architect’s goal.
This in turn makes it possible to apply optimization algo-
rithms to design nudges that optimize this objective function.
Critically, this whole procedure can be performed automati-
cally, without supervision or human data.

Summary

The key insight in resource-rational analysis is to view ra-
tionality as a property of a decision-making process, rather
than as a property of decisions themselves. This conception
of rationality has three theoretical and practical advantages
for the study and development of nudges. First, it provides
us with a set of tools for modeling how factors other than
utility influence people’s choices; this allows us to predict the
effect of different choice architectures. Second, it establishes
a broader notion of utility, one that accounts for the diffi-
culty of making a decision as well as the value of the chosen
option; this allows us to specify objectives for nudges that
target a more holistic notion of well-being. Third, drawing
on the previous two advances, we can formalize the design
of choice architecture as an optimization problem; this al-
lows us to automatically construct nudges that accomplish
arbitrary goals.
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Figure 2

Formal framework: meta-level Markov decision processes

terminate  
computation

belief state computation
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Markov decision process meta-level Markov decision process

actionstate action

+2 -1 +3 -4 -1 -2 -1 -3 +12

reward computational 
cost

reward

A B

Note. (A) A Markov decision process formalizes the problem of acting adaptively in a dynamic environment. The agent executes actions
that change the state of the world and generate rewards, which the agent seeks to maximize. (B) A meta-level Markov decision process
formalizes the problem of deciding how to act when computational resources are limited. The agent executes computations that update their
belief state and incur computational cost. When the agent executes the termination operation ⊥, they take an external action based on their
current belief state.

In the following section, we provide an overview of the
general framework and describe a specific model that instan-
tiates the framework in the context of multi-attribute choice.
In the remainder of the paper, we will show how this model
can be applied to explain, predict, and optimize the effects of
nudges.

Formal framework

As outlined above, the key insight underlying our frame-
work is that cognitive processes such as decision-making
can themselves be viewed as sequential decision problems.
Drawing on a subfield of artificial intelligence known as
rational metareasoning (Matheson, 1968; Russell & We-
fald, 1991), we formalize this insight using the framework
of meta-level Markov decision processes (meta-level MDPs;
Hay, Russell, Tolpin, & Shimony, 2012). In this framework,
a cognitive process is formalized as a sequential process of
executing computational actions that update an agent’s be-
liefs about the world. At each moment, the agent must
choose whether to continue deliberating, refining their be-
liefs but accruing computational cost, or to instead stop com-
puting and make a decision. In the former case, they must
additionally decide which computation to execute next (i.e.,
what to think about); in the latter case, they select the op-
timal action given their current belief and receive a reward
associated with the external utility of that action.

In this section, we present the formal framework and show
how it can be applied to multi-attribute choice, the domain in
which we conduct our experimental case studies. We provide
a non-technical summary at the end of this section.

Markov decision processes

The core mathematical object underlying our approach is
the Markov decision process (MDP), illustrated in Figure 2A.
MDPs are the standard formalism for modeling the sequen-
tial interaction between an agent and a stochastic environ-
ment. An MDP is defined by a set of states S, a set of actions
A, a transition function T , and a reward function r. A state
s ∈ S specifies the relevant state of the world. An action
a ∈ A is an action the agent can perform. The transition
function T encodes the dynamics of the world as a distribu-
tion of possible future states for each possible previous state
and action. Finally, the reward function r specifies the reward
or utility for executing a given action in a given state.

The standard goal in an MDP is to maximize the expected
cumulative reward attained, that is, the return. Importantly,
this may require incurring immediate losses (negative re-
wards) in order to get to a state from which a highly reward-
ing action can be executed. It is typically assumed that the
agent selects their actions based on the current state; the map-
ping from state to action is called a policy, denoted π. Solv-
ing an MDP amounts to finding a policy that maximizes the
expected return, that is, a mapping from states to actions that,
when followed, maximizes the total reward one will receive
on average.

In addition to their foundational role in artificial intelli-
gence (Sutton & Barto, 2018), MDPs are widely used in
models of human decision-making (Dayan & Daw, 2008).
MDPs are the formal foundation for models of reinforcement
learning (Niv, 2009) and model-based planning (Botvinick
& Toussaint, 2012; Huys et al., 2015), as well as competition
between the two systems (Daw, Niv, & Dayan, 2005; Kera-
mati, Dezfouli, & Piray, 2011; Kool, Gershman, & Cush-
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man, 2017). They have also been used to study information-
seeking (Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Hunt,
Rutledge, Malalasekera, Kennerley, & Dolan, 2016), gen-
eralization (Tomov, Schulz, & Gershman, 2021), and hier-
archical abstraction (Botvinick, Niv, & Barto, 2009; Sol-
way et al., 2014). However, with a few notable exceptions
(Dayan & Huys, 2008; Drugowitsch, Moreno-Bote, Church-
land, Shadlen, & Pouget, 2012; Tajima, Drugowitsch, &
Pouget, 2016), MDPs have primarily been used to model the
sequential decision problems posed by the external world. In
the following section, we show how this framework can be
applied to model the sequential decision problem posed by
one’s own cognitive architecture.

Meta-level Markov decision processes

Meta-level Markov decision processes (meta-level MDPs)
extend the standard MDP formalism to model the sequential
decision problem posed by resource-bounded computation
(Hay et al., 2012). Like a standard MDP, there is a set of
states S, a set of actionsA, and a reward function robject (we
omit the transition function because we focus on one-shot
decisions). These define the object-level problem: the exter-
nal problem the agent must solve in the world. Additionally,
the meta-level MDP defines a set of beliefs B, a set of com-
putations C, and meta-level transition and reward functions,
Tmeta and rmeta. These define the meta-level problem: how
to allocate limited computational resources in the service of
solving the object-level problem.

As illustrated in Figure 2B, the meta-level problem is it-
self a sequential decision problem, analogous to one defined
by a standard MDP. However, in the meta-level problem, the
states are replaced by beliefs (mental states) and the actions
are replaced by computations (cognitive operations). The
meta-level transition function describes how computations
update beliefs, and the meta-level reward function captures
both computational cost and the object-level reward of the
action that is ultimately executed. We provide a general for-
mal definition of meta-level MDPs in Appendix A. In the
next section, we define a specific meta-level MDP for multi-
attribute choice.

A meta-level MDP for multi-attribute choice

In a multi-attribute choice problem, an agent must choose
one out of a set of options that differ on a number of features,
each of which the agent values to varying degrees. For exam-
ple, consider the problem of purchasing a car; there are many
options available, each of which has features such as price,
fuel efficiency, comfort, and horsepower. The overall utility
associated with purchasing each car depends on all of these
features; thus, to make the best possible choice, one would
need to consider all of them for every vehicle one could buy.
However, the computational cost of exhaustively evaluating
every car on the market makes such a strategy impractical—

indeed—irrational. Instead, a shrewd consumer would con-
sider only a subset of all the possible options and features,
first evaluating a large set of candidates on the most impor-
tant features and only carefully evaluating the top contenders.
Here, we formalize this kind decision problem as a meta-
level MDP.

We begin with the object-level problem, that is, the de-
cision posed by the world. We assume that the agent must
select one from a set of options that vary on a number of
features. The utility of each option is a linear combination of
those features, with the weights capturing the agent’s prefer-
ences. We now formalize the object-level problem in terms
of states, actions, and a reward function.

States. A state s ∈ S specifies the features of the options
available to the agent, as well as the agent’s preferences for
those features. Concretely, a state is defined by a pair (X, w),
where X is a matrix such that xa, f is the value of feature f
for option a, and w is a vector such that w f is the weight the
agent puts on feature f . Critically, the agent does not have
direct access to the state, but instead maintains a belief about
the state as detailed below.

Actions. Each action a ∈ A selects one of the available
options. There is one action for each option.

Object-level reward. The object-level reward for each
action is simply the utility of the chosen option. We assume
that this utility is a linear combination of the option’s fea-
tures:

robject(s, a) =
∑

f

w f xa, f . (1)

Note that the w and x on the right-hand side of the equation
refer to the elements of s on the left-hand side.

We now formalize the meta-level problem, that is, the
problem of how to decide which action to choose. Char-
acterizing the precise computational architecture underly-
ing human multi-attribute choice is an active research area
(Berkowitsch, Scheibehenne, & Rieskamp, 2014; Bhatia &
Stewart, 2018; Busemeyer, Gluth, Rieskamp, & Turner,
2019; Cohen, Kang, & Leise, 2017; Howes, Warren, Farmer,
El-Deredy, & Lewis, 2016; Noguchi & Stewart, 2018; Roe,
Busemeyer, & Townsend, 2001; Ronayne & Brown, 2017;
Russo & Dosher, 1983; Trueblood, Brown, & Heathcote,
2014; Usher & McClelland, 2004). For simplicity (and con-
sistency with the experimental paradigm that we employ),
we will use a highly simplified architecture in which the be-
lief state simply captures whether each feature has been con-
sidered, assuming that all considered features are perfectly
integrated into the subjective expected utility. Importantly,
this is not intended to be an accurate characterization of the
computations involved in naturalistic multi-attribute choice.
Instead, we make these assumptions to illustrate the frame-
work in a simplified setting.

Beliefs. A belief b ∈ B encodes the agent’s knowledge
about the feature values and weights. Formally, it is a distri-
bution over states. We assume that the agent knows their own
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Figure 3

A meta-level MDP for multi-attribute choice
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Note. The agent must select among a set of options that vary on a number of features that determine the total utility of each option (for
this example, we assume equal weighting). Making this decision can itself be modeled as a sequential decision problem in which the agent
updates their beliefs by executing mental operations. Each mental operation evaluates one feature of one option and updates the belief about
the option’s utility accordingly. At some point, the agent stops deliberating and selects the option that is best according to their belief.

preferences; the belief thus encodes the true weight for each
feature, w. However, they are uncertain about the features of
each options, and thus uncertain about the overall utility of
each option. As illustrated in Figure 3, we capture this un-
certainty with a set of independent normal distributions for
each feature value, such that the belief about feature xa, f is
defined

b(xa, f ) ∼ Normal(µa, f , σa, f ). (2)

The initial belief state captures the knowledge the agent has
about the general distribution of feature values in the en-
vironment. We assume that feature values are distributed
Normal(µ0, σ0) and that the agent knows this. The initial
belief state is thus defined µa, f = µ0 and σa, f = σ0 for all a
and f .

Computations. A computational operation c ∈ C corre-
sponds to considering one feature of one option. Concretely,
each computation measures the exact value of the feature and
integrates that information into the belief state (as detailed in
the next paragraph). We use ca, f to denote the computation
that considers feature xa, f . All meta-level MDPs addition-
ally include a termination operation ⊥, which denotes that
computation should be terminated and an action should be
selected based on the current belief state.

Meta-level transition function. The meta-level transi-
tion function Tmeta describes how considering each feature
updates the belief state. That is,

bt+1 ∼ Tmeta(bt, ct, s). (3)

Each computation integrates the exact value of one feature
into the belief state. If ct = ca, f , the updated belief bt+1 is
identical to the previous belief bt except that

µa, f = xa, f

σa, f = 0.
(4)

Meta-level reward function. The reward function rmeta
describes both the cost of computation and also the utility of
the option that is ultimately chosen. For the former, we as-
sume that considering different features of different options
may have different costs, but that this cost does not depend
on the belief or world state. Thus,

rmeta(b, ca, f , s) = −λa, f for c , ⊥. (5)

where λa, f specifies the cost of considering feature f of op-
tion a. In our experiments, these costs will correspond to
explicit information-gathering fees but the meta-level reward
function can more generally capture the time and mental ef-
fort exerted while incorporating new information into one’s
beliefs.

The reward for terminating computation (i.e., executing
⊥) is the reward associated with the external choice the agent
makes based on their current belief state. It is defined as

rmeta(b,⊥, s) = robject(s, a∗(b)) =
∑

f

w f xa∗(b), f (6)

where a∗(b) is the action2 the agent chooses; specifically, it
is the action with maximal expected value given the current
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belief state,

a∗(b) = argmax
a

E
s∼b

[
robject(s, a)

]
(7)

= argmax
a

E
(X,w)∼b

∑
f

w f xa, f

 (8)

= argmax
a

∑
f

w f µa, f . (9)

Thus, the meta-level reward for termination is the true utility
of the action with maximal estimated utility.

Policy. Although not technically part of the meta-level
MDP itself, in order to simulate cognitive processes and
make behavioral predictions, we need one final component:
the policy that selects which computation to execute in each
possible belief state. One policy of special interest is the
optimal policy, that is, the policy that maximizes meta-level
return. However, meta-level MDPs typically have massive
belief spaces that make computing the optimal policy in-
tractable. To address this, early work in rational metarea-
soning proposed using a one-step lookahead approximation,
termed the “meta-greedy” policy because it greedily maxi-
mizes meta-level reward (Russell & Wefald, 1991). Interest-
ingly, the idea of approximating optimal selection of com-
putations with a one-step lookahead was independently pro-
posed by Gabaix, Laibson, Moloche, and Weinberg (2006)
specifically in the context of multi-attribute choice. Here,
we will also use this approximation. See Appendix B for a
derivation of the meta-greedy policy for the meta-level MDP
defined above.

Summary

In this section, we described a general formal frame-
work for modeling decision-making as a sequential deci-
sion problem: meta-level MDPs. In this framework, a
decision-making process is modeled as a sequence of basic
information-processing operations (or “computations”) that
an agent executes in order to update their beliefs about the
values of different actions they can take (Figure 2B). Iden-
tifying an (approximately) optimal policy for a meta-level
yields a resource-rational decision-making strategy—that is,
a way to determine which information to consider and which
to ignore on any given decision.

We then presented an application of the general frame-
work to multi-attribute choice. In this simplified model, we
assume that the utility of an option is a linear combination of
its features, with the weights for each feature corresponding
to the agent’s preferences. At the beginning of the decision,
the agent does not know the values of the two options. In-
stead, they only have some sense of what values different
features are likely to take have. This is formalized in their
prior beliefs, which also form their initial belief state. Given
this initial belief, they can only choose randomly among the

options. To make a better decision, the agent needs to delib-
erate. In particular, they can consider one of the feature val-
ues, and update their belief accordingly. We formalize this
consideration as a computational action that moves the agent
from their initial belief state to a new belief state, in which
they are certain about the value of one feature and have a
more precise (but still uncertain) belief about the utility of
the corresponding option. Based on this new belief state,
they must choose what to think about next (which computa-
tional action to execute), which will bring them to yet another
belief state. However, each computation incurs a cost. Thus
at some point, usually before considering all the possible in-
formation, the agent will terminate computation, choosing
whichever option has the highest utility according to their
final belief.

The power of our approach is that we can capture many
different types of nudges with only minimal modifications to
this model. By making the assumption that computations are
selected rationally, the model can predict how small changes
to a decision will influence the entire decision-making pro-
cess. Nudges change which computations are best to exe-
cute, which will, in turn, affect the choices people make—
sometimes dramatically so. In the remainder of the paper,
we will apply the model to three different types of nudges.
But first, we describe the paradigm we will use to simulate
nudges in a controlled experimental environment.

An experimental paradigm for studying nudges

A key challenge for studying human decision-making
(and by extension, the effect of choice architecture) is that
the decision-making process is unobservable. To address
this challenge, Payne, Bettman, and Johnson (1988) intro-
duced the Mouselab paradigm, which makes participants’
decision-making processes observable. The basic idea is
to occlude decision-relevant information and require partic-
ipants to click on different areas of the screen to reveal it.
Which pieces of information they uncover, and the order in
which they do so, provides a highly detailed trace of their
decision-making process.

In our version of the task (shown in Figure 4), participants
are faced with a multi-attribute decision-making problem
displayed as a table, with columns corresponding to choice
options and rows corresponding to features on which the op-
tions vary. Concretely, the features correspond to different
types of prizes, the values of which vary from trial to trial
(shown in the leftmost column). To reveal the number of one
type of prize for a given option, the participant must click the
corresponding cell some number of times (the number may
vary); we impose an explicit cost of one point per click.

2For notational clarity, we assume a single optimal action. In the
actual model implementation, ties are broken randomly; thus, a∗(b)
is more precisely a uniform distribution over all optimal actions,
and rmeta(b,⊥, s) takes an expectation over them.
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Figure 4

Experimental interface for Mouselab

Note. On this problem, participants chose between five baskets, represented by the table columns. Each basket has five different prize types,
with the value of each of these prizes given in the leftmost column. To reveal prize counts, participants could click on the corresponding red
box once, with each click costing one point. At any point, participants could stop choosing and select a basket (e.g., basket 1 in this example).
The participant then earned a bonus determined by the total value of the prizes in the selected basket minus the cost spent revealing boxes
(30 points are worth one cent).

Besides making the decision-making process observable,
the Mouselab paradigm has the convenient property of ex-
actly externalizing the meta-level MDP for multi-attribute
choice defined above. In particular, the table of prize num-
bers corresponds to the feature matrix X, the prize values
correspond to the weights w (together, these form the state),
the information currently visible in the table corresponds to
a belief b, revealing a cell corresponds to a computation c,
and the number of clicks necessary to reveal each cell corre-
sponds to the meta-level reward function (specifically, λa, f in
Equation 5).

Using a paradigm that maps directly onto a meta-level
MDP allows us to quantitatively evaluate the resource-
rational approach to nudges without addressing the consider-
able challenge of modeling computational architectures for
naturalistic decisions. Of course, addressing this challenge
will be essential for the approach to be applied in practice,
and it will be a critical direction for future research if our
approach is found to be promising.

In the following sections, we illustrate how our approach
can be used to understand three existing nudges: default op-
tions, suggesting alternatives, and information highlighting.
We model each of these nudges as a modification to the basic
meta-level MDP for multi-attribute choice described above.

In each case, the modification has systematic consequences
for the computations a resource-rational agent executes, and
therefore on the choice they make. To test these predic-
tions, we implement each class of nudge within the Mouse-
lab paradigm, and compare the observed behavior with the
simulations. Critically, all of the models we present are
parameter-free, representing true a priori predictions of the
resource-rational model. In each case, we confirm most or
all of the key behavioral predictions.

Experiment 1: Default options

We begin with a simple but surprisingly effective class of
nudges, default options. As the name suggests, these nudges
involve changing which option people will get if they don’t
actively select another one. Although the efficacy of such
nudges is due in part to changing the outcome for people that
don’t consider the decision at all, defaults still have an effect
when people do deliberate (Dhingra, Gorn, Kener, & Dana,
2012). Here, we focus on this latter pathway.

Model

As illustrated in Figure 5, we model default nudges as
modifications to the agent’s initial belief state. This is consis-
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Figure 5

Experiment 1: Formalizing default options
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Note. The decision maker assumes that the default option is the best choice for a typical person, so their initial belief assigns higher value to
the default option’s features. This influences their choice both directly and indirectly—by changing which cognitive operations they execute.
Circles represent belief states, lines represent cognitive operations, and diamonds represent choices. Hypothetical events are shown in gray
and nudges are shown in light blue.

tent with the common assumption that the agent interprets the
default as a recommendation (Johnson & Goldstein, 2003;
Johnson et al., 2012; McKenzie et al., 2006). In particular,
we assume that the default option is the one that is best for the
“average” person, and further assume that the agent knows
this and integrates the information provided by the default
option accordingly. Intuitively, they will begin the decision-
making process with the expectation that the features of the
default option are better than average. In some cases, this
initial expectation will lead the agent to avoid deliberation
altogether and simply choose the default; in other cases, the
agent will engage in some deliberation in order to tailor their
choice to their own idiosyncratic preferences. However, even
in the latter case, the default still influences their choice.

Recall that we model individual variability in preferences
as different weights of a linear utility function (Equation 1).
For simplicity, we assume that the weights are strictly pos-
itive and that each feature is equally important on average.
The average preferences can then be characterized by w = 1,
and the default option for a decision problem with true fea-
ture values X is

d(X) = argmax
a

robject((X, 1), a) = argmax
a

∑
f

xa, f . (10)

That is, the default option is the one with the greatest sum of
unweighted feature values.

We assume that the agent knows this is how the default is
chosen, and adjusts their initial belief accordingly. To main-
tain independent Gaussian beliefs about each feature value,
we use a mean-field approximation to this belief update. That

is, the initial belief is updated with

(µa, f , σa, f ) =

(µ+, σ+) if a = d
(µ−, σ−) if a , d

, (11)

where µ+ is the average value of a feature for an option that
is best for the average person and µ− is the same for an op-
tion that is not best. Likewise, σ+ and σ− are the standard
deviation of the feature values in each case. We estimate
these values numerically in one million simulated decision
problems, separately for each problem size. As one would
expect, this results in a higher prior mean for the features of
the default and a lower prior mean for all other features. σ+

and σ+ are both slightly lower than σ0.
To preview the results, the model predicts that people will

be more likely to choose an option when it is presented as the
default, and this effect is larger for more complex problems
(those with more options and/or features). Importantly, this
holds even in cases where the model does not immediately
accept the default without performing any computation. Fur-
thermore, the model predicts that providing a default option
will never reduce the agent’s utility (including both choice
payoff and computational cost), although it will be most ben-
eficial to people who have typical preferences. We now test
these predictions.

Methods

For this and all future experiments: data, code, pre-
registrations, and experiment demos can be found at
https://github.com/fredcallaway/optimal-nudging. All anal-
yses were pre-registered, unless otherwise noted. All exper-
iments were approved by the institutional review board of
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Figure 6

Experiment 1: Example default-option trial

Note. On a default trial (illustrated), participants could accept or reject a recommended basket that paid the most if the prizes were equally
valuable (i.e., it identified the basket with the most prizes). If a participant did not accept the default, the banner was removed and participants
could make their own choice. However, the basket label for the default option remained highlighted in green.

Princeton University (protocol number 10859), and all par-
ticipants gave informed consent.

We tested our model predictions on Mouselab, with de-
fault options presented in a banner above the Mouselab table
at the start of the trial (see Figure 6). The default option iden-
tified the basket that would pay the most if all the prizes were
equally valuable—that is, the basket with the most prizes
(ties were broken randomly). Participants were informed of
this selection process and were reminded of it each time a
default option as presented. When the default banner was
presented, all click events for the Mouselab table were dis-
abled and the default option was highlighted in green for vi-
sual saliency. Participants then chose between accepting the
default immediately without revealing any prize counts, or
making their own choice on the trial. If participants chose
to make their own choice, the default banner was hidden for
the remainder of the trial, but the basket label for the default
option remained highlighted in green.

To determine prize counts, we sampled from a normal dis-
tribution with a mean of 5 and a standard deviation of 1.75,
and then rounded and truncated these values so no counts
were below 0 or above 10. To reveal prize counts, partici-
pants could click on the corresponding cell twice, incurring
a cost of two points. Prize values were randomly sampled
with the constraint that they sum to 30 points and each prize
was worth at least one point.

On each test trial, participants earned a bonus equal to the
total value of the prizes in their selected basket minus the

points they spent revealing prize counts. At the end of the
experiment, the total bonus each participant earned was paid
to them as a bonus, with 30 points equaling one cent.

Participants completed 2 practice trials and 32 test trials.
Half of the test trials were control trials, where no default op-
tion was presented, and half were nudge trials with a default
option. Furthermore, half of the problems had two baskets
(i.e., two Mouselab columns) and half had five baskets. Fi-
nally, half had two prize types (i.e., two Mouselab rows) and
half had five prize types. There were thus three binary param-
eters determining each problem—trial type, number of bas-
kets, and number of features. The stimuli were constructed
so that each participant completed four problems for each of
the eight unique parameter combinations, with trial ordering
randomized. Participants earned $1.30 for participating in
the study plus an average bonus of $1.79.

We recruited a preregistered sample size of 400 US-based
participants from Prolific. This sample size was selected by
performing a power analysis on simulated data from a meta-
greedy decision maker on the same set of problems we used
in the experiment. Participants who failed to pass a compre-
hension quiz in their first three tries were excluded from the
experiment.

After collecting and analyzing the data, we discovered that
some participants did not collect any information (and there-
fore chose randomly) on the majority of trials, even in the ab-
sence of a default option. While our pre-registered statistical
tests were nonetheless significant, the effect sizes were sub-
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Figure 7

Experiment 1: Model predictions and experimental results for default options

Model Human

Absent Present Absent Present

0.4

0.6

0.8

Nudge

P
ro

b 
C

ho
os

e 
D

ef
au

lt Features

2

5

Options

2

5

A

Model Human

0 10 20 30 40 0 10 20 30 40

150

160

170

180

Preference Idiosyncrasy

N
et

 E
ar

ni
ng

s

Nudge

Absent

Present

B

Note. (A) The probability that the option which is best for the average person (the “default”) is chosen, depending on whether it is presented
as the default option or not. Each line shows one problem complexity level, defined by the number of features and options. (B) Net
earnings (payoff minus click cost) as a function of preference idiosyncracy (L1 distance from the mean prize-value vector). The case with
a default option is shown in blue. For this and all future results figures: the left panels show the prediction of the zero-parameter resource-
rational model. The right panels show experimental data, excluding participants who revealed no information (and therefore chose a basket
randomly) on more than half of control trials. Plots with full data are included in Appendix C. Points show binned means, error bars show
95% confidence intervals computed by bootstrapping, and regression lines show generative additive model fits with standard error confidence
bands.

stantially reduced by the large amount of random respond-
ing. For this reason, we exclude all participants who made a
choice without gathering any information on more than half
of control trials (those without a default option). We apply
the same exclusion criterion to all experiments, unless other-
wise noted. Plots and statistics for the full dataset are pro-
vided in Appendix C. For Experiment 1, we excluded 102
participants (26%), leaving 298 participants in the analysis.
We also excluded practice trials, as planned, leaving 9536

trials to conduct our pre-registered tests. As pre-registered,
all reported p values reflect one-tailed tests to confirm the
relevant model prediction.

Results

Figure 7A shows the probability that the option which is
best for someone with average preferences is chosen, de-
pending on whether it is presented as the default. In line
with prior research, the model predicted—and our results
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confirmed—that presenting an option as the default increases
the probability of selecting it: participants chose the basket
with the most prizes on 89.8% of trials when it was presented
as the default option, compared with 55.7% on control tri-
als. This difference was significant, as revealed in a logis-
tic regression predicting default-chosen from nudge-present
(z = 34.77, p < .001).

The model predicted that the default will be chosen with-
out any deliberation on 74.7% of trials. However, the
resource-rational agent is still more likely to choose the de-
fault after deliberating because the information encoded in
the default option remains relevant as long as not all fea-
ture values have been considered. On the 25.3% of trials in
which the model did not choose the default immediately, it
chose the default on 76.2% of trials (compared to 62.1% for
control trials). Consistent with this, in the 23.6% of trials on
which our participant did not immediately choose the default,
they were still more likely to select it eventually (63.7% vs.
57.8%; z = 3.53, p < .001). This suggests that participants’
choices were affected by the informational content of the de-
fault over and above an automatic tendency to simply accept
the default without any deliberation.

The model also predicted that the default would have a
more pronounced effect for more complex decisions (opera-
tionalized as the number of options and features). Intuitively,
this is because the default affects the agent’s prior beliefs, and
these priors play a stronger role when more feature values
are left uncovered. However, the model predicted that peo-
ple would be less likely to choose the default option when
they had more idiosyncratic preferences (operationalized as
the L1 distance of w from its mean value across individu-
als; recall that the preference weights, w, are implemented
in the experiment as the values of different types of prizes).
To test these predictions, we ran a logistic regression pre-
dicting default-chosen with many-options and many-features
(binary variables capturing whether there were five or two
options or prizes, respectively), as well as idiosyncrasy (the
L1 distance from the uniform weight vector), nudge-present,
and the interaction of nudge-present with the other vari-
ables as independent variables. The interaction terms pro-
vide the critical tests, as they reveal the effect of the default
after controlling for the main effects of problem complexity
and idiosyncrasy on selection of the option with the most
prizes. As predicted, we found significant positive interac-
tions with many-options (z = 5.06, p < .001) and many-
features (z = 1.66, p = .049), and a significant negative
interaction with idiosyncrasy (z = −5.87, p < .001). Thus,
consistent with the model’s predictions, people were more
likely to choose the default option (relative to baseline) when
the problem was more complex, but they were less likely to
choose it the more their preferences differed from average.

Finally, we investigated the effects of defaults on partic-
ipant earnings. As illustrated in Figure 7B, the model pre-

dicted that defaults would be beneficial for everyone, but that
this benefit would be largest for those with less idiosyncratic
preferences (that is, trials with preferences weights closer
to the uniform distribution). Consistent with this predic-
tion, participants achieved higher net earnings (payoff mi-
nus click cost) when a default option was presented (174.44
points vs. 164.64 points; linear regression: t(9534) =

14.60, p < .001), but there was a significant negative inter-
action between nudge-present and idiosyncrasy (t(9532) =

−4.45, p < .001).

Discussion

Our findings replicated and extended previous findings;
presenting an option as the default increased the chance it
was selected, and helped participants make better choices
(Choi et al., 2006). Furthermore, default nudges were more
effective on more complex choices: increasing the number
of options and features increased the relative probability of
selecting the default. However, default options were not ef-
fective for everybody—participants with more idiosyncratic
preferences were less likely to choose the default, extend-
ing related findings that the impact of default options varies
across groups (Beshears, Choi, Laibson, Madrian, & Wang,
2015; Löfgren et al., 2012). Finally, our model correctly
predicted that people were more likely to choose the default
not only when they made a choice without deliberation, but
also on trials where they revealed feature values. In this way,
our results unify the “cognitive effort” (Johnson & Goldstein,
2003; Johnson et al., 2012) and “recommendation” (Gigeren-
zer, 2008; McKenzie et al., 2006) theories of defaults in a
common rational framework.

Experiment 2: Suggested alternatives

We now apply our framework to suggesting alternative op-
tions (ones that the agent would not have otherwise consid-
ered). Such suggestions could be made before the decision
begins, as in recommender systems, or after an initial choice,
as in up-sells. Here, we use our resource-rational framework
to investigate and compare both settings.

Model

As illustrated in Figure 8, we model alternative sugges-
tions as the addition of a new option, ã, to the choice set. To
capture the positive information that typically accompanies
a suggestion (try the kale; it’s healthy!), we assume that the
best feature of the suggested option is immediately revealed
to the agent at no cost.3 Formally, we identify the best feature

3One could also model the suggestion as a more general recom-
mendation, as we did for defaults. We chose this alternative ap-
proach because suggested options are often not best for most peo-
ple.
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Figure 8

Experiment 2: Formalizing suggested alternatives
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Note. The suggestion is modeled as an addition of a new option to the choice set along with information about that option’s best feature.
Suggestions made at the onset of the decision are more effective than those made after an initial choice (as is often done) because a late
suggestion must override the previously considered information, while an early suggestion discourages considering other options at all. See
Figure 5 for legend.

as
f̃ = argmax

f
xã, f , (12)

and we update the agent’s belief state by setting

µã, f = xã, f

σã, f = 0.
(13)

Note that this is equivalent to forcing the agent to execute
cã, f .

We consider two versions of the suggestion nudge, which
differ in when the suggestion is made. In the early suggestion
version, we present the suggested option along with the orig-
inal set, highlighting its best feature. In the late suggestion
version, we first allow the agent to make an initial decision
and then present the suggested option, giving them the option
of changing their initial choice.

To preview the results, the model predicts that people will
overall be more likely to choose the suggested option than
chance, but that this suggestion will be more effective in
complex environments. The model also predicts that early
suggestions will be more effective than late suggestions. This
is because early suggestions can influence the entire deliber-
ation process.

Methods

We tested our predictions on alternative suggestions using
a similar Mouselab setup as our defaults experiment. Sug-
gestions were given either at the start of the trial (pre-choice
suggestion) or after the participant has chosen a basket (post-
choice suggestion). As in our defaults experiment, these sug-
gestions were presented as a banner at the top of the screen.
At the same time the banner was presented, the highest prize
count for the suggested basket was revealed (ties were broken

randomly). Because suggested alternatives often involve in-
troducing a new option, on trials with suggestions, there were
six baskets to choose from, whereas there were only five on
control trials (note that the sixth basket on post-choice sug-
gestions was shown only after the participant has chosen a
basket). On pre-choice trials, the suggested basket was cho-
sen randomly from the six baskets. On post-choice trials, the
right-most basket in the table was revealed and suggested.
Unlike the defaults experiment, click events were not dis-
abled when the banner was introduced, and the banner was
displayed for the remainder of the trial after being shown.

Participants completed two practice trials and 30 test tri-
als. No suggestion was given on control trials. Each problem
had either two prize types or five prize types (i.e., features).
The problems were arranged so that each participant com-
pleted 10 control problems (five with two features and five
with five features), and 20 nudge trials (five for every unique
combination of nudge timing and number of features), with
problem order randomized. Participants earned $1.30 for
participating in the experiment plus an average bonus of
$1.66.

We recruited a preregistered sample size of 400 partici-
pants from Prolific, limiting our study to those living in the
United States.4 As in Experiment 1, this sample size was se-
lected by performing a power analysis on simulated data, and
participants were required to pass a comprehension test in
their first three tries. Prize counts, prize values, and bonuses
were also determined in the same way as in Experiment 1.

We excluded 123 participants (31%) who gathered no in-

4We previously ran an experiment where some participants were
told how we selected the revealed feature. However, participants
had trouble understanding this process and so the present experi-
ment does not include this information. Data for this experiment is
available at https://github.com/fredcallaway/optimal-nudging.
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Figure 9

Experiment 2: Example pre-choice suggestion trial

Note. On pre-choice suggestion trials, a random basket at the start of the trial was chosen to be highlighted, and its highest feature value
(i.e., prize count) was revealed. On post-choice suggestion trials, a new basket was revealed and highlighted using the same procedure after
a participant chose a basket.

formation on more than half of control trials, leaving 277
participants in the analysis. We also excluded practice trials,
as planned. We thus conducted our pre-registered tests on
8864 trials. As pre-registered, all reported p values reflect
one-tailed tests to confirm the relevant model prediction.

Results

The key results are illustrated in Figure 10. Replicating
previous findings and confirming our prediction, we found
that participants chose suggested options significantly more
often than chance, as measured by a chi-square test of inde-
pendence (32.9% vs. 16.7%, χ2(1) = 1052, p < .001). The
model predicts this effect because revealing the best feature
of an option ensures that it is considered, while it might not
have been otherwise.

As for default options, the model predicted that sugges-
tions would be more effective for complex decisions. This
prediction is somewhat counterintuitive because the single
revealed feature has less weight when there are many fea-
tures, suggesting that the suggestion should be less effective
in this case. However, when there are few features, the model
typically gathers all the information needed to choose an op-
tion with maximal or near-maximal value; thus there is little
room for the suggestion to influence its choice. In the human
data, suggestions were slightly more effective with five vs.
two features (z = 1.83, p = .034), however the effect was
small and it was not significant in the full (pre-exclusion)
dataset (z = 1.35, p = .089).

The most striking model prediction concerns the relative
efficacy of early and late suggestions. The model predicted
that early suggestions would have a larger effect than late
suggestions, especially for more complex problems. This ef-
fect occurs because the early suggestion can influence—or
rather, preclude—later deliberation. When the suggestion is

made early, the agent may avoid the effort of searching for
a better option, and simply takes the suggestion. In contrast,
when the suggestion is made late, the agent will have already
invested some effort into finding the option that is best on the
features they value most. The positive information about the
suggested item is unlikely to outweigh this earlier evidence.
In line with our predictions, participants were more likely to
choose the suggested option when it was presented before
an initial choice (z = −12.74, p < .001). However, we did
not observe a significant interaction with problem complex-
ity (z = −0.38, p = .353).

Discussion

Replicating previous research, we found that suggesting
an alternative option significantly increased the chance that
participants would choose it. As we predicted, this effect was
larger for suggestions that were given before a decision. This
effect is largely driven by changing the deliberation process,
or “script” for making a choice. This change in deliberation
leads participants to perceive suggested options as unusually
desirable, allowing us to capture two theories of suggested
alternatives in a single model (Heidig et al., 2017; Schwartz
et al., 2012). Our results may also shed light on why de-
fault options (Hummel & Maedche, 2019) and recommender
systems (Häubl & Trifts, 2000) can be so effective—because
they manipulate the choice architecture at the start of delib-
eration, they influence the entire decision process and can
thus have substantial impacts on choice.

Experiment 3: Information highlighting

The final class of nudges we consider are those that draw
the agent’s attention to specific features or options. This class
of nudges extends the information-revealing mechanism we
used to model suggestions to a case in which the nudge does
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Figure 10

Experiment 2: Model predictions and experimental results for suggested alternatives
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Note. Each panel shows the probability that the suggested option was chosen depending on whether it is presented at the beginning of the
trial or after an initial decision has been made.

not force the agent to consider a specific piece of informa-
tion, but instead makes it easier to consider some informa-
tion.

Model

As illustrated in Figure 11, we model information high-
lighting as a reduction in the cost of certain computations.
Intuitively, it is easier to consider information that is printed
in large text on the front of a package versus small text on the
back. Formally, this is captured in the λa, f parameters (Equa-
tion 5), which assigns a cost to considering each feature of
each option.

Many different types of nudges can be modeled as changes
to the cost of certain computations. For example, to model
a “foodscape” nudge, in which healthy foods are placed in
prominent locations, we would reduce the computational
cost of evaluating all the features for the healthy choices.
Similarly, to model the “traffic light” nudge, in which the
sugar and fat content of foods are prominently displayed, we
would reduce the cost of evaluating the salt and fat feature
for all the options. In our experiment, we consider a simpli-
fied form of the traffic light nudge in which only one feature
is highlighted. Thus, on each trial we randomly select one
feature, f̃ , and set λa, f̃ = 1 for all a, with all other values
taking λa, f = 3.

The model predictions are straightforward. Because the
agent knows the cost of each computation in advance, reduc-
ing the cost of a computation through information highlight-
ing increases the chance that the agent will consider that in-
formation. As a result, the highlighted information will have

a greater impact on choice, and the agent will choose options
that are better on the highlighted feature.

Methods

We tested our predictions on traffic light nudges using the
same Mouselab process-tracing paradigm we used to study
default nudges and suggestions. All problems had five bas-
kets and three prize types, and all click costs were initially set
to three points. Prize counts and bonuses were determined
following the same procedure as the defaults experiment.

On every trial, one prize was randomly selected as the
highlighted prize. On nudge trials, the click cost of all the
highlighted prize’s values was reduced from three points to
one point (see Figure 12). On control trials, the highlighted
prize’s click costs were not changed. The value of the high-
lighted prize was sampled to achieve a close-to-uniform dis-
tribution for each participant. Concretely, on nudge trials, the
value was sampled without replacement from either the set
of even integers between 2 and 28 or the set of odd integers
between 1 and 27 (both inclusive), with the set (even or odd)
determined via simple randomization separately for each par-
ticipant. The value of the highlighted prize on control trials
was sampled without replacement from the complementary
set of integers (i.e., if the highlighted prize values on nudge
trials were sampled from the even integers, the highlighted
prize values on control trials were sampled from the odd in-
tegers). On both control and nudge trials, the prize values of
the two non-highlighted prizes were randomly sampled with
the constraint that all three prize values sum to 30 points and
each prize was worth at least one point.

Participants completed one practice nudge trial and one
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Figure 11

Experiment 3: Formalizing information highlighting
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Note. When all information is equally accessible, many possible sequences of cognitive operations are possible and both choices are plausi-
ble. Highlighting some information reduces the cost of considering that information, leading the agent towards certain trains of thought and
away from others. This in turn makes some choices more likely. See Figure 5 for legend.

Figure 12

Experiment 3: Example information-highlighting trial

Note. All click costs were initially set to three points. On nudge trials, the click costs for the highlighted prize’s boxes were reduced to one
point. On control trials, a highlighted prize was selected but its boxes were not put on sale.

practice control trial, then 14 test nudge trials and 14 test
control trials. Trial order for both practice and test trials was
randomized. Participants earned $1.30 for completing the
experiment, plus an average bonus of $1.51.

We recruited a preregistered sample size of 150 partici-
pants from Prolific, limiting our study to those living in the
United States. As in the previous experiments, this sample
size was selected by performing a power analysis on sim-
ulated data, and participants were required to pass a com-
prehension test in their first three tries. Prize counts, prize
values, and bonuses were also determined in the same way
as previous experiments.

We excluded 62 participants (41%) who gathered no in-

formation on more than half of control trials, leaving 88 par-
ticipants in the analysis. We also excluded practice trials,
as planned. We thus conducted our pre-registered tests on
2464 trials. As pre-registered, all reported p values reflect
one-tailed tests to confirm the relevant model prediction.

Results

The model predicted that reducing the cost of considering
a feature would increase the amount that people consider it.
Indeed, as shown in Figure 13A, participants revealed an av-
erage of 3.20 values of the highlighted feature on nudge tri-
als, compared with 1.89 values for control trials (two-sample
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Figure 13

Experiment 3: Model predictions and experimental results for information highlighting
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t-test: t(2458.7) = 16.57, p < .001).
In the model, revealing the value of a feature for more

options effectively increases the weight of the feature; this
leads it to choose options that have high value on that di-
mension. Figure 13B confirms this prediction. On nudge tri-
als, participants chose baskets with an average of 6.29 prizes
of the highlighted type, compared to a baseline of 5.89 on
control trials (t(2457.7) = 5.86, p < .001). Similarly, par-
ticipants chose the basket with the highest number of high-
lighted prizes significantly more often on nudge trials (67.4%
vs. 54.4%; χ2(1) = 44, p < .001).

Discussion

Replicating earlier work, we found that reducing the cost
of a feature had a large impact on participants’ deliberation

strategies and choices (Sonnenberg et al., 2013). When the
cost of a prize value was reduced to one point, participants
revealed more values of that feature, chose options that had
higher values for the highlighted feature, and were more
likely to choose the option that maximized the highlighted
feature. Crucially, we showed how each of these effects can
result from a resource-rational strategy—“over-weighting”
the highlighted option in one’s choices can be optimal when
individuals have limited time and attention.

While previous research has shown that nutritional labels
are only effective for those who notice or use them (Ollberd-
ing, Wolf, & Contento, 2011), our results suggest a com-
plementary causal structure—people who weight a feature
(i.e., sugar content) highly are more likely to use information
about that feature to make a decision. This means that while
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labeling can reduce decision cost for those who value the
highlighted feature, it may have a less pronounced impact on
actual choices—highlighting a feature is most beneficial to
those who would likely have already incorporated that fea-
ture into their decision. Those that do not weight the feature
highly, by contrast, are less likely to utilize, or benefit from,
the label. This suggests that studies using survey data—
where people may report gains from reduced deliberation
cost—may overestimate the effectiveness of labels relative
to those that measure actual consumption (see Elbel, Kersh,
Brescoll, and Dixon (2009); Elbel et al. (2013); Seward,
Block, and Chatterjee (2016); Sonnenberg et al. (2013)).

Constructing optimal nudges

Until now, we have focused on using resource-rational
analysis to understand and predict the effects of established
nudges. Here, we go further, and use resource-rational anal-
ysis to design new nudges. Because the resource-rational
model makes quantitative predictions about how a nudge
will affect the agent’s decision-making process and eventual
choice, we can define an objective function that takes as input
a decision problem and a candidate nudge and returns a scalar
indicating how desirable the agent’s behavior is expected to
be under the modified choice architecture. We can then use
an optimization algorithm to automatically identify the best
possible nudge of a given class for a given problem.

The proposed method for constructing optimal nudges
consists of five steps:

1. Model a decision problem as a meta-level MDP, M.
2. Specify a space of possible nudges as a set of possible

modified meta-level MDPs, M̃.
3. Specify the goal of the nudge with an objective func-

tion g such that g(M̃, s) specifies how desirable the
decision maker’s behavior will be given the modified
meta-level MDP M̃ if the true state of the world is s.

4. Specify the choice architect’s knowledge about the
world as a distribution over possible states, barch.

5. Identify the optimal nudge as the modification that
maximizes the expected value of the objective func-
tion, given the architect’s beliefs:

M̃∗(s) = argmax
M̃∈M̃

E
[
g(M̃, s)

∣∣∣ s ∼ barch

]
(14)

Here, we illustrate this method in the context of multi-
attribute choice.

Step 1: Metalevel MDP

The first step in our method for constructing optimal
nudges is to model the decision-making process in the target
domain as a meta-level MDP. We have already completed
this step for multi-attribute choice as part of our analysis of
existing nudges.

Step 2: Space of nudges

After modeling a target decision-making problem as a
meta-level MDP, we next specify the space of possible
nudges one could apply as a set of modified meta-level
MDPs. We consider two classes of modifications—those that
change the agent’s prior beliefs, and those that highlight in-
formation.

Changing the agent’s prior beliefs corresponds to modi-
fying the initial belief state, b0. We have already seen two
specific examples of this: we modeled the effect of defaults
by increasing the prior mean for all features of the default
option, and we modeled the effect of suggestions by imme-
diately revealing the suggested option’s best feature (setting
the prior to a delta distribution on that value). Here, we
limit our attention to modifications of the latter type, i.e.,
those that correspond to immediately revealing the values
of some features. However, rather than using a fixed rule
(e.g., always revealing the best feature of a specific option),
we instead allow for an arbitrary selection of feature values
to reveal, with a constraint on the total number of revealed
values. Concretely, we require that exactly three values are
revealed. Each candidate nudge is identified by a set of three
unique option-feature pairs {(a1, f1), (a2, f2), (a3, f3)}. M̃ is
then identical to M except that µai, fi = xai, fi and σai, fi = 0 for
i ∈ {1, 2, 3}.

Highlighting information corresponds to changing the
meta-level reward function. We assume that only the costs
can be modified, as the termination reward corresponds to
the value of the chosen option. In the most general form, we
could specify a unique reduction for every possible compu-
tation. However, this would result in a very large space of
possible nudges. To create a more tractable space to opti-
mize over, we apply the constraint that the cost is reduced by
a fixed amount, δ, for exactly three feature values. Thus,
as before, a nudge is identified by a set of three unique
option-feature pairs {(a1, f1), (a2, f2), (a3, f3)}, modifying M̃
with rmeta(b, cai, fi , s) = −(λa, f − δ) for i ∈ {1, 2, 3}.

Step 3: Objective function

How should we select among the many possible nudges
that we formalized in the previous step? Ideally, we would
implement the nudge that best accomplishes our goals. But
in order to specify which nudge best accomplishes our goals,
we must first specify what exactly our goals are. In step 3,
we make the goal of a nudge mathematically precise in the
form of an objective function.

There are many types of goals a nudge might have. For
example, many nudges aim to maximize the probability that
people take a certain action, e.g., recycling or registering to
become an organ donor. This kind of goal can be formalized
as maximizing the probability of the decision maker choos-
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ing a specific action,

gaction(M̃, s; a) = E
bT

[
a∗(bT ) = a

∣∣∣ M̃, s
]
, (15)

where the expectation is taken with respect to the belief state
of the decision maker when they make a choice, bT . Al-
though the distribution over bT depends on M̃ and s in com-
plex ways, reducing the cost of a computation will generally
make the agent more likely to execute it. Thus, this objective
function will select modifications that make it inexpensive
to consider features that make the desired action, a, appear
desirable or make competing actions seem undesirable.

Other nudges, such as suggestions from digital recom-
mendation systems, aim not to make people choose a spe-
cific option, but rather to improve the overall quality of their
decisions. We can model this kind of goal as maximizing the
expected utility of the decision maker’s choice,

futility(M̃, s) = E
bT

[
utility(s, a∗(bT ))

∣∣∣ M̃, s
]
. (16)

Finally, a choice architect might want to not only encour-
age people to make better decisions, but also to make it eas-
ier to make those decisions. We can formalize this goal as
maximizing the cumulative meta-level reward, which cap-
tures both decision quality and computational cost,

fmeta(M̃, s) = E
c

 T∑
t

r(bt, ct)

∣∣∣∣∣∣∣ M̃, s

 . (17)

Here, the expectation is taken over all possible sequences of
computations the agent could execute. This quantity is also
called the meta-level return, and it is the quantity that the op-
timal meta-level policy maximizes. We chose this objective
for the experiments presented below.

Step 4: Architect belief

As formalized in the previous step, the desirability of a
nudge depends on the true state of the world. The choice
architect will typically know something about that state, ide-
ally information that individual agents don’t have direct ac-
cess to (for example, the average annual out-of-pocket costs
for a given insurance policy). At the same time, the agent
may have access to information that the architect lacks (for
example, their own risk preferences). We thus specify the
choice architect’s knowledge of the world as a distribution
over world states, barch, that may differ from the agent’s ini-
tial belief.

For our experiments, we will assume that the architect has
perfect knowledge of the feature values , but does not know
the agent’s preference weights. We do assume, however, that
the architect knows the distribution from which w is drawn.
In our experiments, this is a uniform distribution over all pos-
sible integer weights that sum to thirty. We thus marginalize

over this distribution when computing the expected value of
a nudge in Equation 14. Because there are a huge number of
possible weights, we approximate the expectation with 1000
Monte Carlo samples.

Step 5: Optimization

Given a model of a decision-making process (step 1), a
space of nudges (step 2), an objective function specifying the
goal of the nudge (step 3), and a belief about the true state
of the world (step 4), the final step is to identify the nudge
that maximizes the objective function. When the number of
possible nudges is relatively small, this can be achieved by
exhaustive enumeration. However, to take full advantage of
the flexibility of our approach, we must be able to specify
very large spaces of nudges. To show that the method is
robust to the use of imperfect optimization algorithms, we
employ a simple hill climbing procedure. Recall that both
spaces of nudges we consider correspond to selecting a set of
three cells in the payoff matrix (to either immediately reveal
or to reduce the cost of measuring). We begin by consider-
ing all the nudges in which only a single cell is included in
the set, selecting the cell that maximizes the objective func-
tion (breaking ties randomly). We then commit to including
this cell in the set, and repeat the process with the next cell,
choosing the one that results in the best performance when
added to the set with the first selected cell. Finally, we repeat
the process once more to select the third cell. We emphasize
that this procedure is not guaranteed to find the truly optimal
nudge; however, this will only weaken our results. Develop-
ing better tools to optimize over less-constrained spaces of
nudges is an important direction for future work.

Experiment 4: Optimal nudging by modifying beliefs

We first apply our optimal nudging procedure to develop
nudges that directly modify a decision maker’s initial belief
state. In Mouselab, this corresponds to revealing a set of
feature values at the beginning of a trial. To demonstrate
the value of our approach over and above simply making
information more accessible, we compare optimal nudges
against two baselines: a weak baseline in which features are
revealed randomly, and a strong baseline in which the most
extreme feature values are revealed (for a similar procedure,
see Cioffi, Levitsky, Pacanowski, & Bertz, 2015).

Methods

We tested the efficacy of optimal belief-modifying nudges
in Mouselab, but with some prize values revealed immedi-
ately. All problems had five options and five features, with
prize values generated following the same method as our
other experiments. On each problem, click costs were ini-
tially set to two. Before applying any nudge, we first selected
three random prize counts (i.e., table cells) to reveal. For
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Figure 14

Experiment 4: Problem construction procedure

1). Generate payo� matrix and set all but three costs to two points1). Generate payo� matrix and set all but three costs to two points1). Generate payo� matrix and set all but three costs to two points

Optimal modifications

Random modifications

Extreme modifications

Note. The weights were not known when constructing the nudges.



24 CALLAWAY, HARDY, GRIFFITHS

each nudge type, three additional prize counts were revealed.
These values were chosen randomly for random nudges, and
for extreme nudges, the three hidden values furthest from
5 were revealed (ties were broken randomly). For optimal
nudges, the three values were selected to maximize expected
meta-level total reward (bonus minus click cost), integrat-
ing over possible prize values (see Figure 14). Before the
experiment, we generated 1,000 Mouselab problems, and
constructed optimal, extreme, and random modifications for
each. To generate stimuli, we first sampled from the gen-
erated problems without replacement, and then selected a
nudge (optimal, extreme, or random) to determine the ini-
tially revealed prize counts.

Participants completed two practice trials and 30 test tri-
als. Participants made decisions on 10 test trials for each
modification type, with trial order randomized. Practice tri-
als were generated following a similar procedure, but always
had random modifications. Participants earned $1.30 for par-
ticipating in the study plus an average bonus of $1.66.

We recruited a preregistered sample size of 250 US-based
participants from Prolific. As in Experiment 1, this sample
size was selected by performing a power analysis on simu-
lated data, and participants were required to pass a compre-
hension test in their first three tries.

Because all trials had some values revealed immediately,
we did not exclude any of the 250 participants. However, we
did exclude practice trials, as planned. We thus conducted
our pre-registered tests on 7500 trials. As pre-registered, all
reported p values reflect one-tailed tests to confirm the rele-
vant model prediction.

Results

On average, participants earned 161.3 points on trials
with random nudges, 166.1 points on trials with the heuris-
tic nudge that revealed the most extreme values, and 169.5
points on trials with optimal nudges. A linear regression
with optimal nudge trials as the reference group revealed
that performance was significantly worse in the other two
groups (random: t(7497) = −10.55, p < .001; heuristic:
t(7497) = −4.42, p < .001). This overall performance bene-
fit of optimal nudges was supported by a significant increase
in decision quality (value of the chosen basket) and a sig-
nificant decrease in decision cost (clicking penalty). On av-
erage, participants chose baskets worth 172.8 points on trials
with optimal nudges, compared to 169.6 points with heuristic
nudges (t(7497) = −4.13, p < .001) and 165.0 points with
random nudges (t(7497) = −10.03, p < .001). At the same
time, they incurred a clicking penalty of 3.3 points on trials
with optimal nudges, compared to 3.5 points with heuristic
nudges (t(7497) = 1.69, p = .045) and 3.7 points with ran-
dom nudges (t(7497) = 3.05, p = .001).

Discussion

Our findings replicate previous work showing that not all
information highlighting nudges are equally effective at im-
proving choice (Lin et al., 2017). Indeed, we found that com-
pared to extreme and random modifications, nudges deter-
mined by our procedure increased participants’ total reward
and improved the quality of their choices. Furthermore, opti-
mal nudging made these choices easier to make—compared
to trials with extreme and random modifications, participants
spent significantly fewer points revealing prize counts on tri-
als with optimal nudges.

Our approach to constructing information highlighting
nudges has a number of additional advantages over other ap-
proaches. First, we explicitly specify the goal of the nudge
using an objective function. This can increase the trans-
parency of the nudge, provide a natural way to think about
new types of goals for nudges (e.g., making people’s deci-
sions easier without systematically changing their choices),
and allow individuals to have control over when, how, and
why they are nudged. Second, given a model of the decision-
making process and an objective, our method automatically
discovers an optimal nudge using computational optimiza-
tion techniques. This method has the potential to improve
information highlighting by identifying novel choice archi-
tectures, but can also reduce the human labor and cost in-
volved in designing these nudges. Along these lines, we be-
lieve that our optimal nudging procedure may be especially
useful for constructing choice architectures in digital envi-
ronments (Weinmann, Schneider, & Vom Brocke, 2016). Fi-
nally, by integrating over all possible preferences, our model
can be applied in heterogeneous populations or in domains
where people’s preferences are unknown or unstable (Payne,
Bettman, & Johnson, 1992; Slovic, 1995). This can poten-
tially address criticisms that nudges constructed for the “av-
erage” decision maker can be ineffective or even harmful for
certain subgroups (Costa & Kahn, 2013; Peer et al., 2020;
Thunström, Gilbert, & Ritten, 2018).

Experiment 5: Optimal nudging by modifying costs

In many domains, it may be infeasible to directly manipu-
late people’s belief states. For example, in high-information
environments, individuals may focus on only one or two fea-
tures of a choice (Kalnikaitė et al., 2013), making it difficult
for choice architects to deterministically manipulate atten-
tion. Indeed, food labeling interventions that aim to mod-
ify people’s beliefs states by providing additional informa-
tion are often unsuccessful (Lin et al., 2017). Instead, ef-
fective information highlighting nudges generally reduce the
cost of evaluating key pieces of information. By increasing
the chance that certain features are considered, these nudges
have an indirect and stochastic influence on people’s beliefs.

Here, we test our optimal nudging framework on infor-
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Figure 15

Experiment 4: Model predictions and experimental results for optimal belief modification
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Note. Each point shows the average number of points attained under different strategies for generating belief-modification nudges. The
dashed line shows the average maximal option value (i.e., the utility achieved by an unboundedly rational agent). The expected value of
choosing an option randomly is 150.

mation highlighting nudges that reduce costs without mod-
ifying the initial belief state. In the Mouselab setup, this
corresponds to reducing the cost of certain prize counts at
the start of a trial, rather than fully revealing these values.
As in the previous experiment, we will compare optimal
cost-reductions to both random and extremity-based cost-
reductions.

Methods

All aspects of the design were identical to Experiment 4
with two exceptions. Click costs were initially set to three
points (rather than two points), and the cost for some cells
were reduced to one point (rather than being revealed en-
tirely).

We recruited a preregistered sample size of 250 US-based
participants from Prolific. Participants earned $1.30 for par-
ticipating in the study plus an average bonus of $1.58. To
maintain comparability with Experiment 4, we did not ex-
clude any of our 250 participants in our analyses. We did
exclude practice trials, as planned. We thus conducted our
pre-registered tests on 7500 trials. As pre-registered, all re-
ported p values reflect one-tailed tests to confirm the relevant
model prediction.

Results

As in the previous experiment, we found that our proce-
dure helped participants choose more valuable baskets with
fewer clicks, resulting in higher total payoffs. On aver-
age, participants earned 162.1 points on trials with opti-

mal nudges, compared to 156.4 points with heuristic nudges
(t(7497) = −6.73, p < .001) and 154.6 points with random
nudges (t(7497) = −8.87, p < .001). They chose baskets
worth 166.3 points on trials with optimal nudges, compared
to 161.1 points with heuristic nudges (t(7497) = −6.22, p <
.001) and 159.4 points with random nudges (t(7497) =

−8.18, p < .001). Finally, they incurred a clicking penalty
of 4.2 points on trials with optimal nudges, compared to 4.7
points with heuristic nudges (t(7497) = 2.35, p = .009) and
4.8 points with random nudges (t(7497) = 3.20, p < .001).

Discussion

Similar to our findings on belief-state nudging, we found
that our optimal nudging procedure significantly improved
participants’ choices. Compared to random and extreme
modifications, participants chose better baskets and spent
fewer points revealing prize counts on trials with optimal
modifications. Crucially, these nudges were effective even
though they influenced participants’ beliefs only indirectly.
This setup likely better reflects modern real-world environ-
ments where individuals are often distracted, hurried, and in-
undated with information (Roetzel, 2019). Our results thus
highlight the flexibility of our framework—optimal nudges
can be constructed for any problem where the choice archi-
tect can specify a detailed model of deliberation and identify
a suitable space of possible nudges.
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Figure 16

Experiment 5: Model predictions and experimental results for optimal cost reduction
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Note. Each point shows the average number of points attained under different strategies for generating cost-reduction nudges. The dashed
line shows the average maximal option value (i.e., the utility achieved by an unboundedly rational agent). The expected value of choosing
an option randomly is 150.

General Discussion

In this paper, we proposed a formal framework for mod-
eling, constructing, and evaluating nudges. Our approach is
based on theoretical work that characterizes human decision-
making as making optimal use of limited computational re-
sources (Griffiths et al., 2015; Lieder & Griffiths, 2020).
In this framework, nudges change the initial belief state
or sequence of deliberative actions taken by a resource-
rational decision-maker. This in turn influences their ob-
served choices. While models have traditionally been de-
veloped separately for different nudges and contexts (Chetty,
2015; Yeung, 2012), we are able to account for the effects
of several nudges in this framework. Furthermore, because
our model has no free parameters, we are able to make our
predictions before observing any human behavior.

We tested our framework in five large behavioral exper-
iments. In the first three experiments, we showed how
resource-rational analysis can be used to make precise pre-
dictions about the effects of three commonly-used nudges:
default options, suggested alternatives, and information high-
lighting. In each case, our model both identified novel phe-
nomena and replicated findings from applied research, allow-
ing us to unify several verbal theories of specific nudges in a
common formal framework.

We then showed how our resource-rational approach to
nudging can be used to automatically construct optimal
nudges. Our approach identified nudges that were signifi-
cantly more effective than those identified randomly or by
a heuristic. While we chose to optimize meta-level reward,

or overall well-being, this approach could easily be extended
to optimize other types of nudges, such as those that maxi-
mize the probability of making a certain choice or those that
reduce deliberation cost without systematically changing be-
havior.

Furthermore, because our optimal nudging procedure is
automatic, our approach could be used to extend the con-
cept of personalized nudges (Mills, 2020; Peer et al., 2020;
Schöning, Matt, & Hess, 2019; Sunstein, 2013, 2014; Thaler
& Tucker, 2013; Yeung, 2017). Traditional approaches to
personalizing nudging use past choices or other user data to
estimate people’s preferences, circumstances, and needs. In
our framework, one could infer a user’s preference within
a single decision based on observable measures of their
decision-making operations (for example, mouse- or eye-
tracking). On the other hand, when data privacy is a con-
cern (Mills, 2020), our approach can still be applied without
any user data by integrating over all possible preferences as
we did in our experiments. Similarly, our approach could
automate the construction of self-nudges (Reijula & Her-
twig, 2020), or choice architectures that individuals manipu-
late and design to help improve their own decisions. In our
framework, self-nudges could be constructed by allowing in-
dividuals to specify the objective of the nudge or even the
space of possible modifications. This transparency and in-
dividual autonomy could potentially address arguments that
nudging can be manipulative and paternalistic (Goodwin,
2012; Hausman & Welch, 2010; Wilkinson, 2013).

Despite the advantages, our framework for modeling
nudging presents several challenges that should be addressed
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in future work. First, it requires a detailed model of the com-
putations underlying the decision we would like to intervene
on. In the present work, we avoided this challenge by us-
ing a process-tracing paradigm that externalized these typ-
ically unobservable processes. Applying the method in the
real world, however, requires one to infer this model from
behavior. Nevertheless, even a heavily simplified decision-
making model may be adequate to make useful, if not highly
accurate, predictions. At the very least, our framework iden-
tifies novel predictions and choice architectures nudges that
researchers can test in applied domains.

Second, the effect of a nudge can often be formalized in
the model in numerous ways, and the best formalization may
vary by domain. For example, while our model of defaults—
assuming that they provide information about which option
is best for most people—may work well in the context of
choosing healthcare plans, it may not work when individuals
and the choice architect have highly divergent goals. Thus,
even with our approach, models may still have to be adjusted
for different domains and contexts, limiting the potential for
full automation. Nevertheless, our approach still greatly con-
strains the space of possible models, and provides a general
framework for designing and comparing different possible
models of a given nudge.

Finally, applying the method requires identifying an (ap-
proximately) optimal decision-making strategy given the as-
sumed cognitive architecture. Following previous work in
computer science (Hay et al., 2012; Matheson, 1968; Russell
& Wefald, 1991), economics (Gabaix et al., 2006; Hébert &
Woodford, 2017), neuroscience (Drugowitsch et al., 2012;
Jang, Sharma, & Drugowitsch, 2021; Tajima et al., 2016) and
psychology (Callaway, Lieder, et al., 2018; Callaway et al.,
2021; Chen et al., 2021; Howes et al., 2016), our solution
method assumes that decision-making can be modeled as the
generation of information that is optimally incorporated into
a belief state. However, many models of human decision-
making cannot easily be cast in this way, as they involve arbi-
trary transformations and operations on the decision-relevant
information (see Bhatia, Loomes, & Read, 2021 for a recent
review). Fortunately, the assumption of Bayesian beliefs is
not a requirement for the general approach. As long as a
decision-making model can be specified as a sequential pro-
cess in which cognitive operations update mental states, near-
optimal cognitive processes can be identified by model-free
reinforcement learning (Callaway, Gul, Krueger, Griffiths, &
Lieder, 2018).

Nudges have already proven to be a highly effective mech-
anism for improving the decisions people make. In propos-
ing a formal framework for modeling the effects of choice
architecture, we hope to provide insight into how we can de-
sign even more effective nudges. In addition to providing a
computational tool for predicting the effects of nudges, this
framework forces us to confront important questions about

what the goals of nudging are. Together, these advances al-
low us to apply tools from artificial intelligence to automate
the design of nudges. We anticipate that this will make it
possible to increase the range of contexts in which nudges
can be used. More broadly, our approach of understanding
nudges as modifications to a decision-maker’s internal com-
putational environment may have implications for the larger
goal of designing interfaces that support human decision-
making.
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Appendix A
Metalevel MDPs

Metalevel MDPs extend the standard MDP formalism to
model the sequential decision problem posed by resource-
bounded computation. We define a meta-level MDP as
(S,A, robject,B,C,Tmeta, rmeta). The first three components
define the task-level problem. They have the same interpre-
tation as S, A and r in a standard MDP (we omit the tran-
sition function because we limit our analysis to one-shot de-
cisions). The latter four components define the meta-level
problem. We now define these four components in turn.

Beliefs. A belief state b ∈ B captures the agent’s current
knowledge about the relevant state of the world. Formally, a
belief is a distribution states, B ⊆ ∆(S). Note that ∆(S) de-
notes the set of all possible distributions over S. Importantly,
contrary to a standard rational treatment of beliefs, the belief
states in a meta-level MDP do not include all the information
that is available to the DM. Instead, the belief state only con-
tains information that is immediately accessible, excluding,
for example, long-term memories and the number of calories
in every box of cereal on a shelf.

Computations. A computational operation c ∈ C is a
primitive operation afforded by the computational architec-
ture. Formally, it is a meta-level action that updates the belief
in much the same way as a regular action changes state. All
meta-level MDPs include the termination operation⊥, which
denotes that computation should be terminated and an action
should be selected based on the current belief state. We fur-
ther explain belief updating and termination in the following
two paragraphs.

Transition function. The meta-level transition function
Tmeta : B×C×S → ∆(B) describes how computation updates
beliefs. At each time step, the next belief is sampled from a
distribution that depends on the current belief, the computa-
tional operation that was just executed, and the true state of
the world, that is,

bt+1 ∼ Tmeta(bt, ct, s). (A1)

The transition function thus defines the core structure of the
computational architecture. Following previous work (Hay
et al., 2012; Matheson, 1968), we assume that the effect of
computation is to generate or reveal information about the
true state of the world, which is then integrated into the be-

lief state. Thus, in expectation, computation has the effect of
making one’s beliefs more precise and accurate, although an
individual computation may yield misleading information.

Reward function. The meta-level reward function
rmeta : B×C×S → R describes both the costs and benefits of
computation. For the former, rmeta assigns a strictly negative
reward for all non-terminating computational operations,

rmeta(b, c, s) = −cost(c) for c , ⊥. (A2)

The cost of computation may include multiple factors, such
as energetic costs and opportunity costs.

Intuitively, the benefit of computation is that it allows one
to make better decisions. This is captured by the meta-level
reward for the termination operation ⊥, defined as the true
utility of the external action that the DM would execute given
the current belief. We assume that the action is selected op-
timally. Thus,

rmeta(b,⊥, s) = robject(s, a∗(b)). (A3)

where

a∗(b) = argmax
a

E
[
robject(s, a)

∣∣∣ s ∼ b
]

(A4)

In English, the meta-level reward for termination is the true
utility of the action5 with maximal estimated utility.

Policy. The solution to a meta-level MDP takes the form
of a policy π : B → ∆(C) that (perhaps stochastically) selects
which computation to perform in each possible belief state.
The optimal policy is the one that maximizes expected meta-
level return,

π∗ = argmax
π

E

 T∑
t=1

rmeta(Bt,Ct, S )

∣∣∣∣∣∣∣ Ct ∼ π

 . (A5)

Unfortunately, computing an exact optimal policy is in-
tractable for problems of even moderate complexity. How-
ever, a greedy approximation to the optimal policy can
achieve reasonable performance, sufficient for a predictive
model of human behavior. We show how this greedy approx-
imation can be derived in the next appendix.

Appendix B
Meta-greedy policy

The basic intuition behind the meta-greedy policy of Rus-
sell and Wefald (1991) is to use one-step look-ahead in a
transformed belief MDP (Kaelbling, Littman, & Cassandra,
1998), where the true state is marginalized out.

5For notational clarity, we have assumed a single optimal action.
When multiple actions have the same expected value, we assume
that ties are broken randomly; thus, a∗(b) is more precisely a uni-
form distribution over all optimal actions, and rmeta(b,⊥, s) takes an
expectation over them.
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Belief MDP

Given a meta-level MDP, (S,A, robject,B,C,Tmeta, rmeta),
we can derive a new MDP in which the first three compo-
nents are integrated into the transition and reward functions.
The result is a standard MDP where states are beliefs and
actions are computations. To acomplish this, we must derive
versions of Tmeta and rmeta that marginalize over the true state
of the world.

Marginal reward function. The marginal reward func-
tion is defined

rmeta(b, c) = E
s∼b

[rmeta(b, s, c)] . (B1)

For c , ⊥, rmeta(b, s, c) does not depend on s, and we have
simply

rmeta(b, c) = −cost(c). (B2)

The reward for terminating, however, depends on the state
of the world; we must marginalize it out. Replacing
rmeta(b, s,⊥) with its definition, we have

rmeta(b,⊥) = E
s∼b

[
robject(s, a∗(b))

]
(B3)

= E
s∼b

[
robject(s, argmax

a
E

s′∼b

[
robject(s′, a)

]
)
]

(B4)

= max
a

E
s∼b

[
robject(s, a)

]
. (B5)

(B5) follows from

f (argmax
x

f (x)) = max
x

f (x), (B6)

where f is Es∼b

[
robject(s, ·)

]
. To derive the specific expres-

sion for the multi-attribute model, we replace robject with its
definition, giving us

rmeta(b,⊥) = max
a

E
(X,w)∼b

∑
f

w f xa, f

 (B7)

= max
a

∑
f

w f µa, f . (B8)

(B8) follows from E[xa, f |b] = µa, f and the linearity of expec-
tation (c.f. Equation 7).

Marginal transition function. The marginal transition
function is defined

Tmeta(b′ | b, c) = E
s∼b

[
Tmeta(b′ | b, c, s)

]
. (B9)

Unfortunately, it is not possible to simplify this expression in
the general case. Turning to the multi-attribute case, recall
that the transition function can be defined in generative form
(rather than with an explicit transition probability function)
as setting µ′a, f = xa, f and σa, f = 0. We want to create a
similar generative model to produce b′ given b. Because each

computation only updates the belief for one feature value, we
can leave the others as is. Furthermore, σ′a, f does not depend
on state, and so we can leave it as 0. This leaves µ′a, f . Here,
we must account for our uncertainty in the true feature value,
xa, f . Because the computation sets µa, f to xa, f , we can simply
replace xa, f in the full transition function with a distribution
capturing our belief about the value of xa, f . By definition,
xa, f is distributed Normal(µa, f , σa, f ). The complete marginal
transition model is thus given by

σ′a, f = 0

µ′a, f ∼ Normal(µa, f , σa, f )
(B10)

with all other variables left unchanged.

One-step lookahead

The meta-greedy policy selects computations under the
assumption that it will terminate computation on the next
time step (if it does not terminate on this time step). Given
this assumption, it selects the computation with maximal ex-
pected value. That is,

πgreedy(b) = argmax
c

Qgreedy(b, c), (B11)

where Qgreedy denotes the one-step lookahead value. For the
termination operation, there is no next step to look ahead to,
so the policy uses the true expected value,

Qgreedy(b,⊥) = rmeta(b,⊥) (B12)

We have already derived an analytic expression for the ex-
pected termination reward in (B8). For all non-terminating
computations, the the expected value marginalizes over pos-
sible outcomes of the computation (that is, the updated belief,
b′):

Qgreedy(b, c) = E
b′∼Tmeta(b,c)

[rmeta(b,⊥)] − cost(c) (B13)

We now define an analytic expression for (B13). We begin
by replacing rmeta with (B8), giving us

Qgreedy(b, c) = E
b′∼Tmeta(b,c)

max
a

∑
f

w f µ
′
a, f

 − cost(c). (B14)

To ease notation, we introduce the shorthand Vb(a) =∑
f w f µa, f to denote the expected value of action a given

belief b. The expectation then becomes

E
b′∼Tmeta(b,c)

[
max

a
Vb′ (a)

]
(B15)

Next, note that each computation only updates the expected
value of a single action. We can thus split up the maximiza-
tion into one part that depends on the updated belief and one
that does not,

E
b′∼Tmeta(b,c)

[
max

{
Vb′ (ac),max

a,ac
Vb(a)

}]
, (B16)



34 CALLAWAY, HARDY, GRIFFITHS

where ac is the action inspected by computation c. Note that
Vb′ (a) = Vb(a) for a , ac because computations only affect
the expected value of one action. Thus, the internal max term
is a constant with respect to the expectation. Vb′ (ac), how-
ever, is a random variable. Specifically, it is Normally dis-
tributed with mean Vb(ac) and standard deviation wac, fcσac, fc ,
with fc denoting the feature inspected by computation c. This
follows from

Vb′ (ac) =
∑
f, fc

w fµac, f + w fcµ
′
ac, fc . (B17)

as well as E[aX+b] = b+a E[X] and Var[aX+b] = a2 Var[X].
Intuitively, the expected value of the option should on aver-
age be the same after learning one of its features, and the size
of the update (that is, the variance of the new expected value)
depends on both the range of likely feature values, σac, fc , and
the amount the feature matters, wac, fc .

Thus, (B16) is the expected maximum of a Normally dis-
tributed variable, Vb′ (ac), and a constant, maxa,ac Vb(a). We
can thus apply

E[max{X, z}] = Pr[X ≤ z] · z + (Pr[X > z]) · E[X | X > z].
(B18)

substituting Vb′ (ac) for X and maxa,ac Vb(a) for z. To write
this expression in a compact and intuitive form, let Vc =

Vb′ (ac) be the value of the considered option after consid-
eration (a random variable), let vother = maxa,ac Vb(a) be the
value of the competing “other” option (a constant). We can
then write

Qgreedy(b, c) = Pr [Vc ≤ vother] · vother +

Pr [Vc > vother] · E [Vc | Vc > vother]
− cost(c).

(B19)

This expression involves the Normal CDF and the expecta-
tion of a truncated Normal, both of which are provided by
standard statistical libraries.

Appendix C
Results without exclusions

Here, we provide results for Experiments 1-3 without exclud-
ing participants who chose randomly (without clicking) on
more than half of control trials. In the main text, we report
the one case in which there is a difference in the significance
of a predicted effect (problem complexity in Experiment 2).
Here we report the full set of statistics.

Experiment 1

Participants chose the basket with the most prizes on
89.3% of trials when it was presented as the default op-

tion, compared with 51.2% on control trials. This difference
was significant, as revealed in a logistic regression predicting
default-chosen from nudge-present (z = 43.61, p < .001).

In the 18.0% of trials on which our participant did not im-
mediately choose the default, they were still more likely to
choose it eventually (63.0% vs. 57.6%; z = 3.35, p < .001).

As predicted, we found significant positive interactions
with many-options (z = 6.77, p < .001) and many-features
(z = 1.65, p = .050), and a significant negative interaction
with idiosyncrasy z = −4.80, p < .001).

Participants achieved higher net earnings (payoff minus
click cost) when a default option was presented (174.01
points vs. 161.50 points; linear regression: t(12798) =

20.96, p < .001), but there was a significant negative inter-
action between nudge-present and idiosyncrasy (t(12796) =

−3.06, p = .001).

Experiment 2

Participants chose suggested options significantly more
often than chance, as measured by a chi-square test of in-
dependence (38.0% vs. 16.7%, χ2(1) = 2621, p < .001).

As stated in the main text, participants were not signifi-
cantly more likely to choose the suggested option in prob-
lems with five vs. two features, although the results trend in
that direction (z = 1.35, p = .089).

In line with our predictions, participants were more likely
to choose the suggested option when it was presented before
an initial choice (z = −10.75, p < .001). However, we did
not observe a significant interaction with problem complex-
ity (z = −1.55, p = .061).

Experiment 3

Participants revealed an average of 2.13 values of the
highlighted feature on nudge trials, compared with 1.13
values for control trials (two-sample t-test: t(4009.8) =

16.42, p < .001).

Participants chose baskets with an average of 5.87 prizes
of the highlighted type, compared to a baseline of 5.52 on
control trials (t(4193.0) = 6.23, p < .001). Similarly, par-
ticipants chose the basket with the highest number of high-
lighted prizes significantly more often (53.3% vs. 44.2%;
χ2(1) = 35, p < .001).
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Figure C1

Experiment 1 results without exclusions
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Figure C2

Experiment 2 results without exclusions
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Figure C3

Experiment 3 results without exclusions
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