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Abstract

A longstanding conjecture that has been difficult to test holds
that social interactions amplify the effects of people’s biases.
We tested this conjecture in a perceptual decision-making
paradigm. First, we formalized the algorithmic structure of
decision making in networked crowds when individuals’ per-
ceptions are biased by their utilities. Our analysis predicts that
even weak cognitive biases can be amplified by social interac-
tion. We tested this prediction in a large networked behavioral
experiment. Using a monetary incentive structure to induce a
bias known as motivated perception, we manipulated the pres-
ence of a weak cognitive bias in social and asocial populations.
Social decision making increased participants’ perceptual ac-
curacy relative to an asocial baseline. However, social decision
making also led to significantly amplified rates of motivated
perception, confirming the prediction that shared cognitive bi-
ases can be amplified in social networks.
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Introduction
How do you choose where to eat, who to vote for, or whether
to trust the scientific consensus on global warming? Many
of our decisions both large and small are influenced by in-
teractions with other people in increasingly complex social
networks. However, it remains unclear how social interac-
tions influence the cognitive biases that also shape human de-
cisions. On the one hand, social interactions can increase the
information people have access to (Couzin, 2007), potentially
allowing them to reduce their bias. On the other, the dynamics
of social processes can compound small effects, potentially
leading to socially-induced bias amplification (Anderson &
Holt, 1997).

Understanding how social networks impact our decisions
is increasingly important to both social scientists and pub-
lic policy makers. Of particular interest to both groups has
been motivated reasoning, a bias where people overweight
information that confirms existing or positive beliefs (Kunda,
1990; Leong et al., 2019). Motivated reasoning is thought to
contribute to political and climate-change belief polarization
(Mutz, 2006; Hart & Nisbet, 2012). As polarization increases
(Abramowitz & Saunders, 2008), understanding the impact
of social interactions on this bias is an important challenge
(Bail et al., 2018).

Experimentally investigating bias amplification presents
two significant challenges. The first challenge is that large-
scale, randomized, replicated social experiments are difficult

to conduct. We used Dallinger1 to develop a scalable ex-
perimental paradigm that facilitates recruitment of dozens of
generation-structured experimental social networks (Fig. 1).
The second challenge is that understanding bias amplification
requires a formal framework that connects psychological the-
ory with mathematical approaches to network dynamics. To
address this difficulty, we extended a resource-rational model
of utility-weighted decision making to the population setting.

We used this framework to investigate the impact of social
influence on motivated reasoning in networked populations
on a perceptual task (motivated perception). We focused on
generation-structured social networks to capture the tempo-
ral dependencies and open-ended structure characteristic of
many modern social interactions. Our analysis shows that
utility-weighted decision making can break the connection
between social decision making and distributed algorithms
for Bayesian inference (Krafft et al., 2016). This leads to
a potentially counter-intuitive prediction: social influence in
networked groups can both increase decision-making accu-
racy and decrease objectivity, by amplifying the motivated
perception bias. We tested these predictions in a large be-
havioral experiment. We manipulated the presence of an in-
duced perceptual bias in social and asocial populations. In
line with our model predictions, participants in social treat-
ments made more accurate perceptual judgments than partic-
ipants in asocial treatments. However, participants in the so-
cial bias-inducing treatment also made judgments that were
more biased than an asocial control. These results confirm
the prediction that social interactions can amplify people’s
biases, even on simple perceptual problems.

Background
Motivated reasoning & perception
People’s perceptions are often colored by their desires, pref-
erences, and expectations (Bruner & Goodman, 1947). For
example, sports fans tend to interpret ambiguous fouls as re-
flecting positively on their preferred team, (Hastorf & Cantril,
1954) and also preferentially bet on their home team (Staněk,
2017). In more controlled experiments, people’s preferences
have been shown to influence their perceptions of letters and
numbers (Balcetis & Dunning, 2006) as well as faces and
scenes (Leong et al., 2019). This bias reflects differences

1Available at https://github.com/Dallinger/Dallinger



in actual, not just reported, perceptions (Leong et al., 2019).
This bias can have substantial real-world impacts. Research
has shown that motivated reasoning is an important contrib-
utor to the public divide in people’s beliefs about climate
change (Hart & Nisbet, 2012). Furthermore, minimizing
the effects of motivated reasoning appears to be an effective
method of reducing polarization (Arceneaux & Vander Wie-
len, 2017).

Group decision making
Models of collective intelligence (Couzin, 2007) and network
dynamics (Watts & Strogatz, 1998; Kearns et al., 2006) have
shown clear information processing advantages in networked
groups. This social advantage has been replicated in some
experiments (Mason & Watts, 2012), but refuted in others
(Anderson & Holt, 1997; Toyokawa et al., 2019). These ex-
periments typically focus on real-time interaction in closed-
group (Mesoudi & Whiten, 2008) populations of a fixed set
of individuals, rather than on open-ended, longer term social
processes with evolving populations.

Generation-structured networks have been extensively
studied in models of cultural evolution (Mesoudi & Whiten,
2008) and social learning (Rendell et al., 2010). These mod-
els have shown that individual biases may be amplified over
generations (Boyd & Richerson, 1988). Models of cultural
evolution are typically formalized using frameworks adapted
from population genetics, which can be difficult to connect
to psychological theory (Heyes, 2018). One way to bridge
population-level processes with psychological theory is to
analyze populations of Bayesian agents (Griffiths & Kalish,
2007). This approach has been successful in other cognitive
domains such as language (Griffiths & Kalish, 2007) and cat-
egory systems (Canini et al., 2014). Bayesian models also
predict amplification of cognitive biases (Griffiths & Kalish,
2007). However, existing models focus on problems of C-
induction (Chater & Christiansen, 2010), in which the com-
putational problem facing individuals is to coordinate on con-
ventions. Here, we extend this paradigm to the domain of so-
cial decision-making, and thus to problems of N-induction, in
which populations must solve a “natural”, externally defined
computational problem.

Model: Utility-weighted social filtering
We analyzed social decision making in generation-structured
networks in which n individuals at generation t make a deci-
sion about a unknown quantity θ after observing 1) decisions
of n peers at generation t−1 and 2) independent evidence yt .

Social transmission as particle filtering
Previous models (Krafft et al., 2016) introduced the idea that
social observations play the role of a prior distribution on peo-
ple’s beliefs, connecting social learning with rational models
of inference and decision making. This leads to a formal rela-
tionship between social populations and a class of algorithms
known as Sequential Monte Carlo methods or particle filter-
ing (Doucet et al., 2001). This relationship can be expressed
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Figure 1: Transmission dynamics for a single set of treat-
ment replications on a single trial for participants in bias-
inducing treatments. Participant icon color indicates marked
color. Participants in the first generation were assigned to
an asocial treatment (top right). A participant’s choice was
coded as a binary measure indicating whether they chose their
marked color. Participants in generation t were recruited after
all participants in generation t−1 completed the experiment.
Participants in social treatments (left) viewed choices made
by participants in the previous generation.

by assuming individuals follow a sample-based algorithm for
approximate Bayesian inference. Individual i at generation
t makes a decision θi by first sampling a finite set of K hy-
potheses θ̂i

1, . . . , θ̂
i
K . These initial samples are drawn from a

distribution θ̂i
k ∼ pt−1(θ) that reflects the decisions made by

the previous generation. Individuals re-weight these samples
in light of data yt , before sampling a single hypothesis ac-
cording to the updated weights. The weight assigned to each
hypothesis is wi

k = f (yt |θi
k). Under a Bayesian interpretation,

f (y|θ) represents a likelihood function capturing the individ-
ual’s generative model for data. The distribution over beliefs
for individual i is p

(
θi = θ̂i

k

)
= wi

k/∑
K
j w j

k. Under the sim-
plifying assumption that individuals are exchangeable (all in-
dividuals at generation t observe the same choices from the
previous generation and the same evidence yt ), the distribu-
tion of hypotheses at each generation is:

pt(θ) ∝ f (yt |θi
k)pt−1(θ) = f (y1:t |θi

k)p1(θ
i
k) , (1)

where y1:t denotes the evidence accumulated from generation
1 to t and p1(θ) is the initial distribution. This is a particle fil-
tering algorithm for approximate Bayesian inference, result-
ing in samples from the posterior distribution π(θ|y1:t). This



connection explains why social learning can improve people’s
inferences in generation-structured settings.

Utility-weighted particle filter
In order to model motivated perception, we extend this frame-
work to contexts in which people incur differential utilities
u(θ). In these contexts, the computational problem faced by
individuals is to estimate the expected utility of the unknown
quantity θ. Previous research (Lieder et al., 2018) showed
that this problem can be solved using a resource-rational sam-
pling algorithm known as utility-weighted sampling (UWS).

The key idea behind UWS is that deliberation should ac-
count for the magnitude of a hypotheses’ utilities, even if
these hypotheses have low probability (such as winning the
lottery). When the goal is to estimate expected utility from
a limited set of samples, the optimal sampling distribution
reflects a combination of utility and probability (Lieder et
al., 2018). The UWS algorithm samples hypotheses from
this distribution in order to calculate a weighted expecta-
tion of utility. This approach to decision making provides
a resource-rational foundation for utility-based cognitive bi-
ases like motivated reasoning and perception. In the limit
of a single sample, the UWS decision-making algorithm im-
plies a small change to the hypothesis re-weighting proce-
dure: after sampling a finite set of hypotheses from the in-
herited distribution pt−1(θ), re-weight those samples accord-
ing to wi

k ≡ f (y|θi
k) · |u(θi

k)|. Here u(θ) captures individuals’
shared utilities. Under this model, the distribution of beliefs
at generation t given by Equation 1 becomes:

pt(θ) ∝ f (yt |θ)|u(θ)|pt−1(θ) = f (y1:t |θ)|u(θ)|t p0(θ) . (2)

The recursive filter defined in Equation 2 is not an algo-
rithm for performing distributed Bayesian inference. In this
algorithm, utility biases accumulate because they are reintro-
duced at every generation. While utility-weighted decision
making is a functional solution to the computational problem
faced by individuals, it breaks the connection between social
decision making and distributed Bayesian inference. If the
goal of collective decision making is to accumulate accurate
beliefs, the utility-weighted particle filter (UWPF) defined by
Equation 2 is not a good solution to this computational prob-
lem because the algorithm is biased (see Thrun et al. (2002)
for a related analysis of biased particle filters). This analy-
sis makes a potentially counter-intuitive prediction. On the
one hand, evidence accumulates over time even if the filter
is biased – being part of a social network should improve
people’s decisions. However, on the other hand, utility bi-
ases also accumulate over time, leading to bias amplification.
This formulation connects directly to a psychological theory
of decision making, allowing us to test these predictions ex-
perimentally.

Experiment
Method
We tested the predictions of the utility-weighted particle fil-
ter on a numerosity estimation task (Kao et al., 2018). Par-

ticipants briefly viewed displays of blue and green dots and
chose which color was more numerous. The experiment used
a 2×2 factorial design that varied the presence of an induced
perceptual bias and access to social information.

Participants We recruited 2,617 participants from Ama-
zon’s Mechanical Turk, limiting our study to those living in
the United States. Participants received a base payment of
$0.65 for participation, plus an average bonus of $0.65. Par-
ticipants that failed to pass a short comprehension test were
excluded from the experiment. Our recruitment algorithm
used planned over-recruitment to accelerate data collection
(over-recruited participants were excluded from analyses) en-
abling us to efficiently recruit our preregistered target sample
size of 2,400 participants.

Treatments Participants were recruited in batches (gener-
ations). Generation t was recruited after all participants in
generation t−1 completed the experiment. Participants were
assigned to one of four treatments using block randomization
- asocial without induced bias (ASO-control), asocial with
induced bias (ASO-bias), social without induced bias (SOC-
control), and social with induced bias (SOC-bias).

All participants received 50 points for every correct judg-
ment. Participants in social treatments viewed the choices
made by a set of participants in the previous generation (see
Fig. 2). Participants in bias-inducing treatments were as-
signed a marked color of blue or green. Participants re-
ceived a 1 point bonus for every dot of their marked color.
Participants received this marked-color bonus regardless of
whether their choice was right or wrong. This reward was in-
cluded to induce a motivated perception bias towards the par-
ticipant’s marked color, adapting a procedure used in related
work (Leong et al., 2019). Participants in non bias-inducing
treatments were assigned a marked color in the same man-
ner, but were not aware of this assignment. In every gen-
eration and in every treatment replication (described in de-
tail below), marked color was randomly assigned via block
randomization. Participants in non bias-inducing treatments
were given an additional bonus for completing the experiment
so that participants in all treatments earned the same uncondi-
tional reward. At the end of the experiment, each participant’s
points were paid as a bonus with 10 points equal to $0.01.

Generation structure We recruited 8 generations of par-
ticipants. 10 treatment replications were conducted for each
treatment. Participants in generation 1 were assigned to one
of the two asocial treatments (ASO-bias and ASO-control).
In each generation, 8 participants were assigned to each treat-
ment replication, corresponding to a sample size of 160 par-
ticipants for generation 1 and 320 participants per generation
for generations 2-8. Participants in social treatments at gen-
eration 2 observed the decisions made by generation 1 partic-
ipants in same treatment replication and bias treatment. For
example, a SOC-control participant in generation 2 treatment
replication 5 viewed the choices of the 8 ASO-control partic-
ipants in generation 1 treatment replication 5 (see Fig. 1).
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Figure 2: Experimental interface for participants in the social bias-inducing treatment with a green marked color during practice
rounds. Screen 5 (feedback) is not presented after test rounds.

Procedure Participants completed 2 practice trials and 8
test trials, resulting in a dataset of 24,000 decisions. Trial
order was randomized for practice and test trials. Partici-
pants received immediate feedback after practice trials but
not after test trials. Test trials included two difficulty levels
(medium and hard) corresponding to marked-color propor-
tions of {0.48, 0.52}, and {0.49, 0.51}, respectively. Stim-
uli were preceded by a fixation cross and bounding box for
600 milliseconds. Each stimulus consisted of 100 randomly
positioned and sized blue and green dots displayed for 1 sec-
ond. Dot colors were matched for luminance in LAB color
space. Dot positioning and sizing varied across generations
and across treatment replications, but were constant across
treatments.

Counterbalancing of marked color required re-coding dot
color and social information to prevent unwanted confounds
from color-perception biases. The color assigned to each dot
was determined by the participant’s marked color. For exam-
ple, a trial with marked-color proportion of 0.52 included 52
green dots for participants with a marked color of green, and
52 blue dots for participants with a marked color of blue. So-
cial information presented number of participants making the
majority decision and was also recoded into the current par-
ticipant’s (P) marked color. For example, if 6 of 8 participants
in the previous generation chose their marked color, then if
P’s marked color was blue, she was told that 6 of 8 partici-
pants in the previous generation chose blue. However, if only
3 of 8 participants chose their marked color and P’s marked
color was green, then P was told that 5 of 8 participants chose
blue. Ties were broken via simple randomization.

Participants in all treatments were informed that they were
working for an imaginary mining company looking for valu-
able gemstones. Participants whose marked color was blue
in bias-inducing treatments were told that they were looking
for blue sapphires in green grass, and would judge whether
there were more sapphire dots or more grass dots. Partici-
pants whose marked color was green in bias-inducing treat-
ments were told they were looking for green emeralds in blue
water, and would judge whether there were more emerald or

water dots. Participants in non bias-inducing treatments were
told they were looking for blue sapphires and green emeralds.

Results

Analyses were performed on 19,200 test trial decisions. Ac-
curacy and bias were binary coded for each observation. Ac-
curacy was coded as successful when a participant chose cor-
rectly. Bias was coded as successful when a participant chose
their marked color. We performed preregistered mixed effects
regressions with a logit link predicting accuracy and bias.2

All regressions included fixed effects for condition and ran-
dom intercepts for treatment replication.3 The estimated fixed
effects and their standard errors are shown in Fig. 3. To deter-
mine whether bias or accuracy differed significantly between
two treatments, we performed a likelihood ratio test between
an unrestricted logistic regression predicting bias or accuracy
with fixed effects for all treatments, and a restricted logistic
regression where the two treatments were coded as a single
treatment.
Bias Participants in the asocial bias-inducing treatment
were significantly more biased than participants in both the
asocial no-bias treatment (ASO-bias marked-color choice
proportion: 0.562; ASO-control marked-color choice pro-
portion: 0.526; χ2(1) = 4.14, p = 0.042) and the social no-
bias treatment (SOC-control marked-color choice proportion:
0.513; χ2(1) = 7.31, p = 0.007). Participants in the social
bias-inducing treatment were significantly more biased than
participants in the asocial bias-inducing treatment (SOC-bias
marked-color choice proportion: 0.618; χ2(1) = 9.69, p =
0.002), the asocial no-bias treatment (χ2(1) = 21.77, p <
0.0001), and the social-no bias treatment (χ2(1) = 26.34, p <
0.0001). There was no statistically significant difference in
bias between participants in the asocial no-bias treatment and
social no-bias treatment (χ2(1) = 0.58, p = 0.445).

2Preregistration available at https://osf.io/yth5r
3Our preregistered analysis included participant random effects

which we omitted as they led to singular fits.
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Figure 3: Experimental results. The top plots show the proportion of participants choosing their marked color. More biased
participants will choose their marked color more often. The bottom plots show the participants’ accuracy. Plots on the left show
these estimates pooled across generations, and plots on the right show these estimates broken down by generation. Error bars
on the left plots and shading on the right plots show standard error estimates derived from the mixed-effect logistic regressions.
While only asocial participants were recruited in generation 1, the generation plots show generation 1 social participants to
illustrate the yoking procedure described in the Methods section.

Accuracy Participants in the social no-bias treatment chose
correctly significantly more often than participants in both
the asocial no-bias treatment (SOC-control proportion cor-
rect: 0.654; ASO-control proportion correct: 0.604; χ2(1) =
7.55, p = 0.006) and the asocial biasing-inducing treatment
(ASO-bias proportion correct: 0.607; χ2(1) = 6.72, p =
0.01). There was no statistically significant difference in
accuracy between participants in the two social treatments
(SOC-bias proportion correct: 0.646; χ2(1) = 0.25, p =
0.617). Participants in the social bias-inducing treat-
ment made judgments that were significantly more accurate
than participants in the asocial no-bias treatment (χ2(1) =
5.27, p = 0.022) and participants in the asocial bias-inducing
treatment (χ2(1) = 4.56, p = 0.033). There was no statisti-
cally significant difference in accuracy between participants
in the two asocial treatments (χ2(1) = 0.03, p = 0.858).

Exploratory analyses We investigated how SOC-bias par-
ticipants were both more biased and more accurate relative
to ASO-control participants. To do so, we performed simi-
lar regressions to those above predicting accuracy, but parti-
tioning the data into trials where the true answer matched a
participant’s marked color and those where it did not. SOC-
control participants made judgments that were not signifi-

cantly more accurate than ASO-control when marked color
matched the correct answer (ASO-control proportion cor-
rect: 0.630; SOC-control proportion correct: 0.667; χ2(1) =
1.84, p = 0.175). However, SOC-control participants were
more accurate than ASO-control participants when their
marked color did not match the correct answer (ASO-control
proportion correct: 0.579; SOC-control proportion correct:
0.642; χ2(1) = 7.58, p = 0.006). SOC-bias participants made
judgments that were more accurate than ASO-control partic-
ipants when their marked color matched the correct answer
(SOC-bias proportion correct: 0.764; χ2(1) = 20.97, p <
0.0001), but less accurate when marked color did not match
the correct answer (SOC-bias proportion correct: 0.528;
χ2(1) = 4.64, p = 0.031).

Conclusion
In line with our model predictions and previous research,
participants in social networks made judgments that were
more accurate than participants who performed the task in-
dividually. However, participants made judgments that were
more biased when judgments were transmitted through so-
cial networks. Social information increased participants’ per-
formance but amplified motivated perception. These results
confirm the predictions of earlier mathematical frameworks



which identified the potential for bias amplification. We ex-
tended these models to the domain of social decision making
to test this prediction in a large behavioural experiment. Al-
though the perceptual bias was weak in individuals, social
transmission significantly amplified its effects. Our study
was limited to simple social networks with relatively small
generation sizes. Priorities for future work include develop-
ing methods to combat bias amplification and applying this
framework to more naturalistic domains.
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